Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38116203

RESUMO

Introduction: As a lifestyle factor, poor sleep status is associated with increased cardiovascular morbidity and mortality and may be influenced by environmental stressors, including air pollution. Methods: To determine whether exposure to air pollution modified cardiovascular effects of sleep disruption, we evaluated the effects of single or repeated (twice/wk for 4 wks) inhalation exposure to eucalyptus wood smoke (ES; 964 µg/m3 for 1 h), a key wildland fire air pollution source, on mild sleep loss in the form of gentle handling in rats. Blood pressure (BP) radiotelemetry and echocardiography were evaluated along with assessments of lung and systemic inflammation, cardiac and hypothalamic gene expression, and heart rate variability (HRV), a measure of cardiac autonomic tone. Results and Discussion: GH alone disrupted sleep, as evidenced by active period-like locomotor activity, and increases in BP, heart rate (HR), and hypothalamic expression of the circadian gene Per2. A single bout of sleep disruption and ES, but neither alone, increased HR and BP as rats transitioned into their active period, a period aligned with a critical early morning window for stroke risk in humans. These responses were immediately preceded by reduced HRV, indicating increased cardiac sympathetic tone. In addition, only sleep disrupted rats exposed to ES had increased HR and BP during the final sleep disruption period. These rats also had increased cardiac output and cardiac expression of genes related to adrenergic function, and regulation of vasoconstriction and systemic blood pressure one day after final ES exposure. There was little evidence of lung or systemic inflammation, except for increases in serum LDL cholesterol and alanine aminotransferase. These results suggest that inhaled air pollution increases sleep perturbation-related cardiovascular risk, potentially in part by increased sympathetic activity.

2.
Environ Int ; 167: 107419, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863239

RESUMO

INTRODUCTION: Wildfires are a threat to public health world-wide that are growing in intensity and prevalence. The biological mechanisms that elicit wildfire-associated toxicity remain largely unknown. The potential involvement of cross-tissue communication via extracellular vesicles (EVs) is a new mechanism that has yet to be evaluated. METHODS: Female CD-1 mice were exposed to smoke condensate samples collected from the following biomass burn scenarios: flaming peat; smoldering peat; flaming red oak; and smoldering red oak, representing lab-based simulations of wildfire scenarios. Lung tissue, bronchoalveolar lavage fluid (BALF) samples, peripheral blood, and heart tissues were collected 4 and 24 h post-exposure. Exosome-enriched EVs were isolated from plasma, physically characterized, and profiled for microRNA (miRNA) expression. Pathway-level responses in the lung and heart were evaluated through RNA sequencing and pathway analyses. RESULTS: Markers of cardiopulmonary tissue injury and inflammation from BALF samples were significantly altered in response to exposures, with the greatest changes occurring from flaming biomass conditions. Plasma EV miRNAs relevant to cardiovascular disease showed exposure-induced expression alterations, including miR-150, miR-183, miR-223-3p, miR-30b, and miR-378a. Lung and heart mRNAs were identified with differential expression enriched for hypoxia and cell stress-related pathways. Flaming red oak exposure induced the greatest transcriptional response in the heart, a large portion of which were predicted as regulated by plasma EV miRNAs, including miRNAs known to regulate hypoxia-induced cardiovascular injury. Many of these miRNAs had published evidence supporting their transfer across tissues. A follow-up analysis of miR-30b showed that it was increased in expression in the heart of exposed mice in the absence of changes to its precursor molecular, pri-miR-30b, suggesting potential transfer from external sources (e.g., plasma). DISCUSSION: This study posits a potential mechanism through which wildfire exposures induce cardiopulmonary responses, highlighting the role of circulating plasma EVs in intercellular and systems-level communication between tissues.


Assuntos
Vesículas Extracelulares , MicroRNAs , Incêndios Florestais , Animais , Biomassa , Vesículas Extracelulares/metabolismo , Feminino , Hipóxia , Camundongos , Solo
3.
Sci Total Environ ; 643: 378-391, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940449

RESUMO

Wildland fire emissions cause adverse cardiopulmonary outcomes, yet controlled exposure studies to characterize health impacts of specific biomass sources have been complicated by the often latent effects of air pollution. The aim of this study was to determine if postprandial responses after a high fat challenge, long used clinically to predict cardiovascular risk, would unmask latent cardiometabolic responses in rats exposed to peat smoke, a key wildland fire air pollution source. Male Wistar Kyoto rats were exposed once (1 h) to filtered air (FA), or low (0.36 mg/m3 particulate matter) or high concentrations (3.30 mg/m3) of peat smoke, generated by burning peat from an Irish bog. Rats were then fasted overnight, and then administered an oral gavage of a HF suspension (60 kcal% from fat), mimicking a HF meal, 24 h post-exposure. In one cohort, cardiac and superior mesenteric artery function were assessed using high frequency ultrasound 2 h post gavage. In a second cohort, circulating lipids and hormones, pulmonary and systemic inflammatory markers, and circulating monocyte phenotype using flow cytometry were assessed before or 2 or 6 h after gavage. HF gavage alone elicited increases in circulating lipids characteristic of postprandial responses to a HF meal. Few effects were evident after peat exposure in un-gavaged rats. By contrast, exposure to low or high peat caused several changes relative to FA-exposed rats 2 and 6 h post HF gavage including increased heart isovolumic relaxation time, decreased serum glucose and insulin, increased CD11 b/c-expressing blood monocytes, increased serum total cholesterol, alpha-1 acid glycoprotein, and alpha-2 macroglobulin (p = 0.063), decreased serum corticosterone, and increased lung gamma-glutamyl transferase. In summary, these findings demonstrate that a HF challenge reveals effects of air pollution that may otherwise be imperceptible, particularly at low exposure levels, and suggest exposure may sensitize the body to mild inflammatory triggers.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Testes de Toxicidade Aguda , Poluição do Ar , Animais , Masculino , Ratos , Fumaça , Solo
4.
Inhal Toxicol ; 27(11): 545-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26514782

RESUMO

Increased use of renewable energy sources raise concerns about health effects of new emissions. We analyzed relative cardiopulmonary health effects of exhausts from (1) 100% soy biofuel (B100), (2) 20% soy biofuel + 80% low sulfur petroleum diesel (B20), and (3) 100% petroleum diesel (B0) in rats. Normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats were exposed to these three exhausts at 0, 50, 150 and 500 µg/m(3), 4 h/day for 2 days or 4 weeks (5 days/week). In addition, WKY rats were exposed for 1 day and responses were analyzed 0 h, 1 day or 4 days later for time-course assessment. Hematological parameters, in vitro platelet aggregation, bronchoalveolar lavage fluid (BALF) markers of pulmonary injury and inflammation, ex vivo aortic ring constriction, heart and aorta mRNA markers of vasoconstriction, thrombosis and atherogenesis were analyzed. The presence of pigmented macrophages in the lung alveoli was clearly evident with all three exhausts without apparent pathology. Overall, exposure to all three exhausts produced only modest effects in most endpoints analyzed in both strains. BALF γ-glutamyl transferase (GGT) activity was the most consistent marker and was increased in both strains, primarily with B0 (B0 > B100 > B20). This increase was associated with only modest increases in BALF neutrophils. Small and very acute increases occurred in aorta mRNA markers of vasoconstriction and thrombosis with B100 but not B0 in WKY rats. Our comparative evaluations show modest cardiovascular and pulmonary effects at low concentrations of all exhausts: B0 causing more pulmonary injury and B100 more acute vascular effects. BALF GGT activity could serve as a sensitive biomarker of inhaled pollutants.


Assuntos
Biocombustíveis/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Glycine max/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Material Particulado/administração & dosagem , Material Particulado/toxicidade , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
5.
Inhal Toxicol ; 27(11): 597-612, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26514787

RESUMO

CONTEXT: Soy biodiesel is the predominant biodiesel in the USA, but there is little understanding of the classes of chemicals responsible for the mutagenicity of its emissions. OBJECTIVE: We determined some of the chemical classes responsible for the mutagenicity of the particulate matter (PM) of the emissions from petroleum diesel (B0) and biodiesel containing increasing concentrations of soy methyl esters (B20, B50, and B100). MATERIALS AND METHODS: We subjected organic extracts of the PM to bioassay-directed fractionation by sequential elution on silica gel with solvents of increasing polarity to produce four fractions per fuel. We injected these onto high performance liquid chromatography to produce 62 sub-fractions per fraction based on chemical polarity and evaluated all fractions and sub-fractions for mutagenicity in Salmonella. We correlated the results with the concentrations of 32 polycyclic aromatic hydrocarbons (PAHs) in the fractions. RESULTS: The mutagenicity-emission factors of the fractions generally decreased with increasing concentrations of soy in the fuel. Despite the different chemical compositions of the fuels, the extractable organics of all four emissions had similar features: ∼60% of the mass was nonpolar, non-mutagenic compounds; most of the PAHs were polar; and most of the mutagenicity was due to weakly polar and polar compounds. Some of the mutagenicity of B20 was due to highly polar compounds. CONCLUSIONS: The PM from soy biodiesel emissions was less mutagenic than that from petroleum diesel, and this reduction was associated with reduced concentrations of various weakly polar, polar, and highly polar mutagens, including PAHs, aromatic amines, nitroarenes, and oxy-PAHs.


Assuntos
Biocombustíveis/toxicidade , Glycine max/toxicidade , Mutagênicos/toxicidade , Salmonella/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Bioensaio/métodos , Material Particulado/toxicidade , Salmonella/metabolismo
6.
Inhal Toxicol ; 26(5): 299-309, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24669951

RESUMO

As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States imparts a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sediment were collected from separate dust sources in northeastern Arizona. Analysis of the PM20 fraction demonstrated that the majority of both dust samples were quartz and clay minerals (total SiO2 of 52 and 57%). Using respiratory epithelial and monocytic cell lines, the two desert dusts increased oxidant generation, measured by Amplex Red fluorescence, along with carbon black (a control particle), silica, and NIST 1649 (an ambient air pollution particle). Cell oxidant generation was greatest following exposures to silica and the desert dusts. Similarly, changes in RNA for superoxide dismutase-1, heme oxygenase-1, and cyclooxygenase-2 were also greatest after silica and the desert dusts supporting an oxidative stress after cell exposure. Silica, desert dusts, and the ambient air pollution particle NIST 1649 demonstrated a capacity to activate the p38 and ERK1/2 pathways and release pro-inflammatory mediators. Mice, instilled with the same particles, showed the greatest lavage concentrations of pro-inflammatory mediators, neutrophils, and lung injury following silica and desert dusts. We conclude that, comparable to other particles, desert dusts have a capacity to (1) influence oxidative stress and release of pro-inflammatory mediators in respiratory epithelial cells and (2) provoke an inflammatory injury in the lower respiratory tract of an animal model. The biological effects of desert dusts approximated those of silica.


Assuntos
Poluentes Atmosféricos/toxicidade , Poeira , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Acetilglucosaminidase/metabolismo , Poluentes Atmosféricos/análise , Albuminas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Arizona , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Citocinas/metabolismo , Poeira/análise , Células Epiteliais/metabolismo , Heme Oxigenase-1/genética , Humanos , L-Lactato Desidrogenase/metabolismo , Contagem de Leucócitos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neutrófilos/citologia , Dióxido de Silício/análise , Dióxido de Silício/toxicidade , Superóxido Dismutase/genética
7.
J Toxicol Environ Health A ; 76(15): 907-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24156694

RESUMO

Over the past decade, soy biodiesel (BD) has become a first alternative energy source that is economically viable and meets requirements of the Clean Air Act. Due to lower mass emissions and reduced hazardous compounds compared to diesel combustion emissions (CE), BD exposure is proposed to produce fewer adverse health effects. However, considering the broad use of BD and its blends in different industries, this assertion needs to be supported and validated by mechanistic and toxicological data. Here, adverse effects were compared in lungs and liver of BALB/cJ mice after inhalation exposure (0, 50, 150, or 500 µg/m3; 4 h/d, 5 d/wk, for 4 wk) to CE from 100% biodiesel (B100) and diesel (D100). Compared to D100, B100 CE produced a significant accumulation of oxidatively modified proteins (carbonyls), an increase in 4-hydroxynonenal (4-HNE), a reduction of protein thiols, a depletion of antioxidant gluthatione (GSH), a dose-related rise in the levels of biomarkers of tissue damage (lactate dehydrogenase, LDH) in lungs, and inflammation (myeloperoxidase, MPO) in both lungs and liver. Significant differences in the levels of inflammatory cytokines interleukin (IL)-6, IL-10, IL-12p70, monocyte chemoattractant protein (MCP)-1, interferon (IFN) γ, and tumor necrosis factor (TNF)-α were detected in lungs and liver upon B100 and D100 CE exposures. Overall, the tissue damage, oxidative stress, inflammation, and cytokine response were more pronounced in mice exposed to BD CE. Further studies are required to understand what combustion products in BD CE accelerate oxidative and inflammatory responses.


Assuntos
Poluentes Atmosféricos/toxicidade , Biocombustíveis , Exposição por Inalação/efeitos adversos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Emissões de Veículos/toxicidade , Administração por Inalação , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...