Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 197: 107634, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36965317

RESUMO

Nanoplastics (NPs) as environmental contaminants have received increased attention in recent years. Numerous studies have suggested possible negative effects of plants exposure to NPs, but more data are needed with various plants under different exposure conditions to clarify the underlying phytotoxicity mechanisms. In this study, we investigated the effect of polystyrene nanoplastics (PSNPs; 28.65 nm average diameter) exposure (10, 100 and 250 mg/L) on plant morphology and production of relevant metabolites (steviol glycosides, chlorophylls, carotenoids, and vitamins) of in vitro-grown Stevia rebaudiana plantlets. Additionally, we used dark field microscopy combined with fluorescence hyperspectral imaging for the visualization of internalized PSNPs inside plant tissues. At higher concentrations (>100 mg/L), PSNPs were shown to aggregate in roots and to be transported to leaves, having a significantly negative impact on plant growth (reduced size and biomass), while increasing the production of metabolites compared to controls, most probably because of response to stress. The production of steviol glycosides presented a biphasic dose-response suggestive of hormesis, with the highest values at 10 mg/L PSNPs (1.5-2.2-fold increase compared to controls), followed by a decline in production at higher concentrations (100 and 250 mg/L), but with values comparable to controls. These results are promising for future in vivo studies evaluating the effect of NP exposure on the production of steviol glycosides, the natural sweeteners from stevia.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Poliestirenos/metabolismo , Glucosídeos/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232670

RESUMO

Gadolinium-based contrast agents are molecular complexes which are extensively used for diagnostic purposes. Apart from their tremendous contribution to disease diagnostics, there are several issues related to their use. They are extremely stable complexes and potential contaminants of surface and ground waters, an issue which is documented worldwide. The irrigation of fields with contaminated surface waters or their fertilization with sludge from wastewater treatment plants can lead to the introduction of Gd into the human food supply chain. Thus, this study focused on the potential toxicity of Gd on plants. For this purpose, we have studied the molecular effects of gadobutrol (a well-known MRI contrast agent) exposure on in vitro-grown Stevia rebaudiana. The effects of gadobutrol on plant morphology, on relevant plant metabolites such as chlorophylls, carotenoids, ascorbic acids (HPLC), minerals (ICP-OES), and on the generation of free radical species (MDA assay and EPR) were assessed. Exposures of 0.01, 0.05, 0.1, 1, and 3 mM gadobutrol were used. We found a correlation between the gadobutrol dose and the plant growth and concentration of metabolites. Above the 0.1. mM dose of gadobutrol, the toxic effects of Gd+3 ions became significant.


Assuntos
Compostos Organometálicos , Stevia , Carotenoides , Meios de Contraste/toxicidade , Gadolínio/toxicidade , Gadolínio DTPA , Humanos , Imageamento por Ressonância Magnética , Esgotos
3.
Biomedicines ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625894

RESUMO

Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-related toxic effects. Currently, there is no specific tacrolimus toxicity biomarker except a graft biopsy. Our study aimed to identify specific serum metabolites correlated with tacrolinemia levels using serum high-precision liquid chromatography-mass spectrometry and standard laboratory evaluation. Three machine learning algorithms were used (Naïve Bayes, logistic regression, and Random Forest) in 19 patients with high tacrolinemia (8 ng/mL) and 23 patients with low tacrolinemia (5 ng/mL). Using a selected panel of five lipid metabolites (phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine, arachidyl palmitoleate, and ceramide), Mg2+, and uric acid, all three machine learning algorithms yielded excellent classification accuracies between the two groups. The highest classification accuracy was obtained by Naïve Bayes, with an area under the curve of 0.799 and a classification accuracy of 0.756. Our results show that using our identified five lipid metabolites combined with Mg2+ and uric acid serum levels may provide a novel tool for diagnosing tacrolimus toxicity in kidney transplant recipients. Further validation with targeted MS and biopsy-proven TAC toxicity is needed.

4.
Colloids Surf B Biointerfaces ; 216: 112536, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567806

RESUMO

Engineered nanomaterials are increasingly used in everyday life applications and, in consequence, significant amounts are being released into the environment. From soil, water, and air they can reach the organelles of edible plants, potentially impacting the food chain and human health. The potential environmental and health impact of these nanoscale materials is of public concern. TiO2 and ZnO are among the most significant nanomaterials in terms of production amounts. Our study aimed at evaluating the effects of large-scale TiO2 (~100 nm) and ZnO (~200 nm) nanoparticles on soybean plants grown in vitro. The effect of different concentrations of nanoparticles (10, 100, 1000 mg/L) was evaluated regarding plant morphology and metabolic changes. ZnO nanoparticles showed higher toxicity compared to TiO2 in the experimental set-up. Overall, elevated levels of chlorophylls and proteins were observed, as well as increased concentrations of ascorbic and dehydroascorbic acids. Also, the decreasing stomatal conductance to water vapor and net CO2 assimilation rate show higher plant stress levels. In addition, ZnO nanoparticle treatments severely affected plant growth, while TEM analysis revealed ultrastructural changes in chloroplasts and rupture of leaf cell walls. By combining ICP-OES and TEM results, we were able to show that the nanoparticles were metabolized, and their internalization in the soybean plant tissues occurred in ionic forms. This behavior most likely is the main driving force of nanoparticle toxicity.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Nanopartículas/metabolismo , Glycine max , Titânio/toxicidade , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...