Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 81(13): 5433-8, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19485405

RESUMO

Porous polymer monolithic (PPM) columns are employed to collect and concentrate neuronal release from invertebrate and vertebrate model systems, prior to their characterization with mass spectrometry. The monoliths are fabricated in fused-silica capillaries from lauryl methacrylate (LMA) and ethylene glycol dimethacrylate (EDMA). The binding capacities for fluorescein and for fluorescently labeled peptides are on the order of nanomoles per millimeter of length of monolith material for a capillary with an inner diameter of 200 microm. To evaluate this strategy for collecting peptides from physiological solutions, angiotensin I and insulin in artificial seawater are loaded onto, and then released from, the monoliths after a desalination rinse, resulting in femtomole limits of detection via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Positioned in the extracellular media near Aplysia californica bag cell neurons, upon electrical stimulation, these LMA-EDMA monoliths are also used to collect and concentrate peptide release, with egg-laying hormones and acidic peptide detected. In addition, the collection of several known peptides secreted from chemically stimulated mouse brain slices demonstrates their ability to collect releasates from a variety of neuronal tissues. When compared to collection approaches using individual beads placed on brain slices, the PPM capillaries offer greater binding capacity. Moreover, they maintain higher spatial resolution, compared to the larger-volume, solid-phase extraction collection strategies.


Assuntos
Encéfalo/metabolismo , Peptídeos/análise , Polímeros/química , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Aplysia/fisiologia , Metacrilatos/química , Camundongos , Peptídeos/isolamento & purificação , Peptídeos/metabolismo
2.
Lab Chip ; 6(5): 667-74, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16652183

RESUMO

The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.

3.
Electrophoresis ; 26(24): 4684-90, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16278909

RESUMO

An ESI emitter made of poly(dimethylsiloxane) interfaces on-chip sample preparation with MS detection. The unique multilayer design allows both the analyte and the spray solutions to reside on the device simultaneously in discrete microfluidic environments that are spatially separated by a polycarbonate track-etched, nanocapillary array membrane (NCAM). In direct spray mode, voltage is applied to the microchannel containing a spray solution delivered via a syringe pump. For injection, the spray potential is lowered and a voltage is applied that forward biases the membrane and permits the analyte to enter the spray channel. Once the injection is complete, the bias potential is switched off, and the spray voltage is increased to generate the ESI of the injected analyte plug. Consecutive injections of a 10 microM bovine insulin solution are reproducible and produce sample plugs with limited band broadening and high quality mass spectra. Peptide signals are observed following transport through the NCAM, even when the peptide is dissolved in solutions containing up to 20% seawater. The multilayer emitter shows great potential for performing multidimensional chemical manipulations on-chip, followed by direct ESI with negligible dead volume for online MS analysis.


Assuntos
Dimetilpolisiloxanos/química , Silicones/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Insulina/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...