Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 108(8): 2101-2115, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655432

RESUMO

T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory checkpoint receptor that negatively regulates Tcell responses. CD226 competes with TIGIT for binding to the CD155 ligand, delivering a positive signal to the T cell. Here we studied the expression of TIGIT and CD226 in a cohort of 115 patients with chronic lymphocytic leukemia (CLL) and report expression of TIGIT and CD226 by leukemic cells. By devising a TIGIT/CD226 ratio, we showed that CLL cells favoring TIGIT over CD226 are typical of a more indolent disease, while those favoring CD226 are characterized by a shorter time to first treatment and shorter progression-free survival after first treatment. TIGIT expression was inversely correlated to the B-cell receptor (BCR) signaling capacity, as determined by studying BTK phosphorylation, cell proliferation and interleukin- 10 production. In CLL cells treated with ibrutinib, in which surface IgM and BCR signaling capacity are temporarily increased, TIGIT expression was downmodulated, in line with data indicating transient recovery from anergy. Lastly, cells from patients with Richter syndrome were characterized by high levels of CD226, with low to undetectable TIGIT, in keeping with their high proliferative drive. Together, these data suggest that TIGIT contributes to CLL anergy by downregulating BCR signaling, identifying novel and actionable molecular circuits regulating anergy and modulating CLL cell functions.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Citocinas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Receptores Imunológicos/genética
3.
Cancer Lett ; 536: 215645, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35318117

RESUMO

The Human Genome Project in 2001 has opened the Pandora's box on the complexity of DNA structure and transcriptional regulation. Only a small fraction of the 3 billion bases is part of the protein-coding genes, while approximately 98.5% is represented by non-coding sequences. Besides the classical messenger, ribosomal and transfer RNAs, the "cellular RNA world" is made of short and long non-coding RNAs (lncRNAs) that play regulatory or structural roles, shifting the balance of pathogenic gene variations from coding to non-coding genome. LncRNAs are 200 and 100,000 nucleotide long molecules, not translated into protein, highly heterogeneous in terms of expression within the cells, showing tissue and stage specificity. They are emerging as modifiers of epigenetic, transcription, and translation processes, and can be implicated in the pathogenesis of cancers. In this review, we will focus on B, T and NK hematological malignancies, with the aim of presenting an update on lncRNAs landscape and on their role as potential oncogenes or oncosuppressors. Moreover, we will talk over the bi-directional crosstalk between lncRNAs and epigenetics since these modifications can impact on lncRNAs expression, and, in turn, non-coding transcripts can regulate chromatin organization and transcriptional processes. Finally, we will point the attention on their use as potential biomarkers for diagnostic and prognostic purposes, and possibly as attractive targets in a translational perspective, opening for novel therapeutic options.


Assuntos
Neoplasias Hematológicas , RNA Longo não Codificante , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Humanos , Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Curr Treat Options Oncol ; 23(4): 526-542, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35294723

RESUMO

OPINION STATEMENT: In the last 10-15 years, the way to treat cancers has dramatically changed towards precision medicine approaches. These treatment options are mainly based on selective targeting against signaling pathways critical for or detrimentally activated in cancer cells in cancer cells, as well as exploiting molecules that are specifically expressed on neoplastic cells, also known as tumor-associated antigens. These considerations hold true also in the hematological field where a plethora of novel targeted agents have reached patients' bedside, significantly improving clinical responses. Chronic lymphocytic leukemia (CLL) is an example of how targeted therapies, such as BTK, PI3K, or Bcl-2 inhibitors as well as anti-CD20 antibodies, have improved patients' management, even when adopted as frontline treatment. However, these advancements do not apply to Richter's syndrome (RS), the transformation of CLL into a very aggressive and fatal lymphoma, occurring in 2-10% of patients. RS is usually a fast-growing lymphoma of the diffuse large B cell or the Hodgkin's variant, with a dismal prognosis. Despite advancements in depicting and understanding the genetic background of RS and its pathogenesis, no significant clinical results have been registered. In the last couple of years, several studies have started to investigate the impact of novel drugs or drug combinations and some of them have opened for clinical trials, currently in phase I or II, whose results will be soon available. This review will present an overview of current and most recent therapeutic options in RS, discussing also how results coming from xenograft models may help in designing and identifying novel treatment opportunities to overcome the lack of effective therapies.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Antineoplásicos/uso terapêutico , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/etiologia , Linfoma Difuso de Grandes Células B/patologia , Prognóstico
5.
Blood ; 137(24): 3378-3389, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33786583

RESUMO

A small subset of cases of chronic lymphocytic leukemia undergoes transformation to diffuse large B-cell lymphoma, Richter syndrome (RS), which is associated with a poor prognosis. Conventional chemotherapy results in limited responses, underlining the need for novel therapeutic strategies. Here, we investigate the ex vivo and in vivo efficacy of the dual phosphatidylinositol 3-kinase-δ/γ (PI3K-δ/γ) inhibitor duvelisib (Duv) and the Bcl-2 inhibitor venetoclax (Ven) using 4 different RS patient-derived xenograft (PDX) models. Ex vivo exposure of RS cells to Duv, Ven, or their combination results in variable apoptotic responses, in line with the expression levels of target proteins. Although RS1316, IP867/17, and RS9737 cells express PI3K-δ, PI3K-γ, and Bcl-2 and respond to the drugs, RS1050 cells, expressing very low levels of PI3K-γ and lacking Bcl-2, are fully resistant. Moreover, the combination of these drugs is more effective than each agent alone. When tested in vivo, RS1316 and IP867/17 show the best tumor growth inhibition responses, with the Duv/Ven combination leading to complete remission at the end of treatment. The synergistic effect of Duv and Ven relies on the crosstalk between PI3K and apoptotic pathways occurring at the GSK3ß level. Indeed, inhibition of PI3K signaling by Duv results in GSK3ß activation, leading to ubiquitination and subsequent degradation of both c-Myc and Mcl-1, making RS cells more sensitive to Bcl-2 inhibition by Ven. This work provides, for the first time, a proof of concept of the efficacy of dual targeting of PI3K-δ/γ and Bcl-2 in RS and providing an opening for a Duv/Ven combination for these patients. Clinical studies in aggressive lymphomas, including RS, are under way. This trial was registered at www.clinicaltrials.gov as #NCT03892044.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Humanos , Isoquinolinas/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinas/farmacologia , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Blood ; 137(24): 3365-3377, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33512452

RESUMO

Richter syndrome (RS) represents the transformation of chronic lymphocytic leukemia (CLL), typically to an aggressive lymphoma. Treatment options for RS are limited and the disease is often fatal. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed on CLL cells and other cancers but not on healthy adult tissues, making it an attractive, tumor-specific therapeutic target. VLS-101 is being developed as an antibody-drug conjugate (ADC) for therapy of ROR1-expressing (ROR1+) cancers. VLS-101 comprises UC-961 (a humanized immunoglobulin G1 monoclonal antibody that binds an extracellular epitope of human ROR1), a maleimidocaproyl-valine-citrulline-para-aminobenzoate linker, and the antimicrotubule cytotoxin monomethyl auristatin E (MMAE). VLS-101 binding to ROR1 results in rapid cellular internalization and delivery of MMAE to induce tumor cell death. We studied 4 RS patient-derived xenografts (RS-PDXs) with varying levels of ROR1 expression (11%, 32%, 85%, and 99% of cells). VLS-101 showed no efficacy in the lowest-expressing RS-PDX but induced complete remissions in those with higher levels of ROR1 expression. Responses were maintained during the posttherapy period, particularly after higher VLS-101 doses. In systemic ROR1+ RS-PDXs, VLS-101 dramatically decreased tumor burden in all RS-colonized tissues and significantly prolonged survival. Animals showed no adverse effects or weight loss. Our results confirm ROR1 as a target in RS and demonstrate the therapeutic potential of using an ADC directed toward ROR1 for the treatment of hematological cancers. A phase 1 clinical trial of VLS-101 (NCT03833180) is ongoing in patients with RS and other hematological malignancies.


Assuntos
Aminobenzoatos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Sistemas de Liberação de Medicamentos , Imunoconjugados/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Oligopeptídeos/farmacologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Aminobenzoatos/química , Animais , Antineoplásicos Imunológicos/química , Humanos , Imunoconjugados/química , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/química , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Dis Model Mech ; 13(5)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32188741

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons (MNs) in the central nervous system. ALS etiology is highly multifactorial and multifarious, and an effective treatment is still lacking. Neuroinflammation is a hallmark of ALS and could be targeted to develop new therapeutic approaches. Interestingly, the transcription factor Nurr1 has been demonstrated to have an important role in the inflammatory process in several neurological disorders, such as Parkinson's disease and multiple sclerosis. In the present paper, we demonstrate for the first time that Nurr1 expression levels are upregulated in the peripheral blood of ALS patients. Moreover, we investigated Nurr1 function in the SOD1-G93A mouse model of ALS. Nurr1 was strongly upregulated in the spinal cord during the asymptomatic and early symptomatic phases of the disease, where it promoted the expression of brain-derived neurotrophic factor mRNA and the repression of NFκB pro-inflammatory targets, such as inducible nitric oxide synthase. Therefore, we hypothesize that Nurr1 is activated in an early phase of the disease as a protective endogenous anti-inflammatory mechanism, although not sufficient to reverse disease progression. On the basis of these observations, Nurr1 could represent a potential biomarker for ALS and a promising target for future therapies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Superóxido Dismutase-1/genética , Fatores de Transcrição/genética , Regulação para Cima/genética , Esclerose Lateral Amiotrófica/sangue , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/sangue , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
8.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155826

RESUMO

Representing the major cause of morbidity and mortality for chronic lymphocytic leukemia (CLL) patients, immunosuppression is a common feature of the disease. Effectors of the innate and the adaptive immune response show marked dysfunction and skewing towards the generation of a tolerant environment that favors disease expansion. Major deregulations are found in the T lymphocyte compartment, with inhibition of CD8+ cytotoxic and CD4+ activated effector T cells, replaced by exhausted and more tolerogenic subsets. Likewise, differentiation of monocytes towards a suppressive M2-like phenotype is induced at the expense of pro-inflammatory sub-populations. Thanks to their B-regulatory phenotype, leukemic cells play a central role in driving immunosuppression, progressively inhibiting immune responses. A number of signaling cascades triggered by soluble mediators and cell-cell contacts contribute to immunomodulation in CLL, fostered also by local environmental conditions, such as hypoxia and derived metabolic acidosis. Specifically, molecular pathways modulating T-cell activity in CLL, spanning from the best known cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death 1 (PD-1) to the emerging T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT)/CD155 axes, are attracting increasing research interest and therapeutic relevance also in the CLL field. On the other hand, in the microenvironment, the B cell receptor (BCR), which is undoubtedly the master regulator of leukemic cell behavior, plays an important role in orchestrating immune responses, as well. Lastly, local conditions of hypoxia, typical of the lymphoid niche, have major effects both on CLL cells and on non-leukemic immune cells, partly mediated through adenosine signaling, for which novel specific inhibitors are currently under development. In summary, this review will provide an overview of the molecular and microenvironmental mechanisms that modify innate and adaptive immune responses of CLL patients, focusing attention on those that may have therapeutic implications.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Imunomodulação , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Microambiente Tumoral/imunologia , Animais , Humanos
9.
Oncoimmunology ; 7(2): e1393596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308326

RESUMO

Pancreatic Ductal Adenocarcinoma (PDA) is characterized by a complex tumor microenvironment that supports its progression, aggressiveness and resistance to therapies. The delicate interplay between cancer and immune cells creates the conditions for PDA development, particularly due to the functional suppression of T cell anti-tumor effector activity. However, some of the mechanisms involved in this process are still poorly understood. In this study, we analyze whether the functional and epigenetic profile of T cells that infiltrate PDA is modulated by the microenvironment, and in particular by tumor-associated macrophages (TAMs). CD4 and CD8 T cells obtained from mice orthotopically injected with syngeneic PDA cells, and untreated or treated with Trabectedin, a cytotoxic drug that specifically targets TAMs, were sorted and analyzed by flow cytometry and characterized for their epigenetic profile. Assessment of cytokine production and the epigenetic profile of genes coding for IL10, T-bet and PD1 revealed that T cells that infiltrated PDA displayed activated Il10 promoter and repressed T-bet activity, in agreement with their regulatory phenotype (IL10high/IFNγlow, PD1high). By contrast, in Trabectedin-treated mice, PDA-infiltrating T cells displayed repressed Il10 and Pdcd1 and activated T-bet promoter activity, in accordance with their anti-tumor effector phenotype (IL10low/IFNγhigh), indicating a key role of TAMs in orchestrating functions of PDA-infiltrating T cells by modulating their epigenetic profile towards a pro-tumoral phenotype. These results suggest the targeting of TAMs as an efficient strategy to obtain an appropriate T cell anti-tumor immune response and open new potential combinations for PDA treatment.

10.
Front Immunol ; 9: 3075, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671056

RESUMO

Increasing evidence supports the anti-inflammatory role of estrogens in Multiple Sclerosis (MS), originating from the observation of reduction in relapse rates among women with MS during pregnancy, but the molecular mechanisms are still not completely understood. Using an integrative data analysis, we identified T helper (Th) 17 and T regulatory (Treg) cell-type-specific regulatory regions (CSR) regulated by estrogen receptor alpha (ERα). These CSRs were validated in polarized Th17 from healthy donors (HD) and in peripheral blood mononuclear cells, Th17 and Treg cells from relapsing remitting (RR) MS patients and HD during pregnancy. 17ß-estradiol induces active histone marks enrichment at Forkhead Box P3 (FOXP3)-CSRs and repressive histone marks enrichment at RAR related orphan receptor C (RORC)-CSRs in polarized Th17 cells. A disease-associated epigenetic profile was found in RRMS patients during pregnancy, suggesting a FOXP3 positive regulation and a RORC negative regulation in the third trimester of pregnancy. Altogether, these data indicate that estrogens act as immunomodulatory factors on the epigenomes of CD4+ T cells in RRMS; the identified CSRs may represent potential biomarkers for monitoring disease progression or new potential therapeutic targets.


Assuntos
Esclerose Múltipla Recidivante-Remitente/sangue , Gravidez/sangue , Linfócitos T Reguladores/fisiologia , Células Th17/fisiologia , Transcriptoma , Adolescente , Adulto , Análise de Variância , Polaridade Celular , Montagem e Desmontagem da Cromatina/genética , Epigênese Genética , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Voluntários Saudáveis , Código das Histonas/genética , Humanos , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Polimorfismo de Nucleotídeo Único , Terceiro Trimestre da Gravidez/sangue , Sequências Reguladoras de Ácido Nucleico/genética , Adulto Jovem
11.
PLoS One ; 11(12): e0168639, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992601

RESUMO

Tab2, originally described as a component of the inflammatory pathway, has been implicated in phenomena of gene de-repression in several contexts, due to its ability to interact with the NCoR corepressor. Tab2 interacts also with steroid receptors and dismisses NCoR from antagonist-bound Estrogen and Androgen Receptors on gene regulatory regions, thus modifying their transcriptional activity and leading to pharmacological resistance in breast and prostate cancer cells. We demonstrated previously that either Tab2 knock-down, or a peptide mimicking the Estrogen Receptor alpha domain interacting with Tab2, restore the antiproliferative response to Tamoxifen in Tamoxifen-resistant breast cancer cells. In this work, we map the domain of Tab2 responsible of Estrogen Receptor alpha interaction. First, using both co-immunoprecipitation and pull-down with recombinant proteins, we found that the central part of Tab2 is primarily responsible for this interaction, and that this region also interacts with Androgen Receptor. Then, we narrowed down the essential interaction region by means of competition assays using recombinant protein pull-down. The interaction motif was finally identified as a small region adjacent to, but not overlapping, the Tab2 MEKK1 phosphorylation sites. A synthetic peptide mimicking this motif efficiently displaced Tab2 from interacting with recombinant Estrogen Receptor alpha in vitro, prompting us to test its efficacy using derivatives of the MCF7 breast carcinoma cell lines that are spontaneously resistant to Tamoxifen. Indeed, we observed that this mimic peptide, made cell-permeable by addition of the TAT minimal carrier domain, reduced the growth of Tamoxifen-resistant MCF7 cells in the presence of Tamoxifen. These data indicate a novel functional domain of the Tab2 protein with potential application in drug design.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Peptídeos/genética , Peptídeos/farmacologia , Domínios Proteicos , Tamoxifeno/farmacologia
12.
Front Cell Neurosci ; 10: 147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313512

RESUMO

Estrogens are neuroprotective factors in several neurological diseases. Neuroglobin (NGB) is one of the estrogen target genes involved in neuroprotection, but little is known about its transcriptional regulation. Estrogen genomic pathway in gene expression regulation is mediated by estrogen receptors (ERα and ERß) that bind to specific regulatory genomic regions. We focused our attention on 17ß-estradiol (E2)-induced NGB expression in human differentiated neuronal cell lines (SK-N-BE and NT-2). Previously, using bioinformatics analysis we identified a putative enhancer in the first intron of NGB locus. Therefore, we observed that E2 increased the enrichment of the H3K4me3 epigenetic marks at the promoter and of the H3K4me1 and H3K27Ac at the intron enhancer. In these NGB regulatory regions, we found estrogen receptor alpha (ERα) binding suggesting that ERα may mediate chromatin remodeling to induce NGB expression upon E2 treatment. Altogether our data show that NGB expression is regulated by ERα binding on genomic regulatory regions supporting hormone therapy applications for the neuroprotection against neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...