Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 42(1): 1-4, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949777

RESUMO

Undergraduate laboratory course components often provide training in various techniques without connections to an interlinked real-world scenario. This article emphasizes the benefits of longitudinal integration of research techniques to enhance learning and emphasize societal relevance. An example of a biomedical engineering challenge involving a new pandemic is described.


Assuntos
Engenharia Biomédica , Aprendizagem , Projetos de Pesquisa
2.
Small ; 20(18): e2307240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100284

RESUMO

Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.


Assuntos
Vesículas Extracelulares , Lipoproteínas , Maleatos , Poliestirenos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Maleatos/química , Humanos , Animais , Cromatografia em Gel , Camundongos , Macrófagos/metabolismo
3.
Nat Nanotechnol ; 19(1): 13-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110531

RESUMO

Extracellular vesicles (EVs) are biological nanoparticles that promote intercellular communication by delivering bioactive cargo over short and long distances. Short-distance communication takes place in the interstitium, whereas long-distance communication is thought to require transport through the blood circulation to reach distal sites. Extracellular vesicle therapeutics are frequently injected systemically, and diagnostic approaches often rely on the detection of organ-derived EVs in the blood. However, the mechanisms by which EVs enter and exit the circulation are poorly understood. Here, the lymphatic system and transport across the endothelial barrier through paracellular and transcellular routes are discussed as potential pathways for EV entry to and exit from the blood circulatory system.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicação Celular
4.
Trends Cancer ; 9(11): 883-886, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666676

RESUMO

Recent studies have revealed that cancer cell-derived extracellular vesicles (EVs) modulate immunological responses. Lipids have diverse biological functions, and are known to promote tumor malignancy. However, the immunoevasive roles of EV lipids in cancer progression remain poorly understood. Nevertheless, the study of cancer cell-derived EV lipids holds great promise for diagnostic and therapeutic interventions.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/patologia , Neoplasias/patologia , Lipídeos
5.
J Extracell Vesicles ; 12(9): e12362, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37712345

RESUMO

The variable presence of contaminants in extracellular vesicle (EV) samples is one of the major contributors to a lack of inter-study reproducibility in the field. Well-known contaminants include protein aggregates, RNA-protein complexes and lipoproteins, which resemble EVs in shape, size and/or density. On the contrary, polysaccharides, such as hyaluronic acid (HA), have been overlooked as EV contaminants. Here, it is shown that low and medium molecular weight HA polymers are unexpectedly retained to some extent in EV fractions using two common isolation methods known for high purity: size-exclusion chromatography and tangential flow filtration. Although these isolation techniques are capable of efficient removal of non-EV-associated proteins, this is not the case for HA polymers, which are partially retained in a molecular weight-dependent manner, especially with size-exclusion chromatography. The supramolecular structure and hydrodynamic size of HA are likely to contribute to isolation in EV fractions of filtration-based approaches. Conversely, HA polymers were not retained with ultracentrifugation and polymer-based precipitation methods, which are known for co-isolating other types of contaminants. HA has a broad range of immunomodulatory effects, similar to those ascribed to various sources of EVs. Therefore, HA contaminants should be considered in future studies to avoid potential inaccurate attributions of functional effects to EVs.


Assuntos
Vesículas Extracelulares , Ácido Hialurônico , Reprodutibilidade dos Testes , Cromatografia em Gel , Polímeros
6.
Adv Drug Deliv Rev ; 201: 115054, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591370

RESUMO

Over the past decades, there has been an exponential increase in the development of preclinical and clinical nanodelivery systems, and recently, an accelerating demand to deliver RNA and protein-based therapeutics. Organ-specific vasculature provides a promising intermediary for site-specific delivery of nanoparticles and extracellular vesicles to interstitial cells. Endothelial cells express organ-specific surface marker repertoires that can be used for targeted delivery. This article highlights organ-specific vasculature properties, nanodelivery strategies that exploit vasculature organotropism, and overlooked challenges and opportunities in targeting and simultaneously overcoming the endothelial barrier. Impediments in the clinical translation of vasculature organotropism in drug delivery are also discussed.


Assuntos
Portadores de Fármacos , Nanopartículas , Humanos , Células Endoteliais , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Fármacos por Nanopartículas
7.
Langmuir ; 39(23): 8255-8266, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265082

RESUMO

In vitro cell-based characterization methods of nanoparticles are generally static and require the use of secondary analysis techniques and labeling agents. In this study, bare niosomes and chitosan-coated niosomes (chitosomes) and their interactions with intestinal cells are studied under dynamic conditions and without fluorescent probes, using surface plasmon resonance (SPR)-based cell sensing. Niosomes and chitosomes were synthesized by using Tween 20 and cholesterol in a 15 mM:15 mM ratio and then characterized by dynamic light scattering (DLS). DLS analysis demonstrated that bare niosomes had average sizes of ∼125 nm, polydispersity index (PDI) below 0.2, and a negative zeta (ζ)-potential of -35.6 mV. In turn, chitosomes had increased sizes up to ∼180 nm, with a PDI of 0.2-0.3 and a highly positive ζ-potential of +57.9 mV. The viability of HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultured cells showed that both niosomes and chitosomes are cytocompatible up to concentrations of 31.6 µg/mL for at least 240 min. SPR analysis demonstrated that chitosomes interact more efficiently with HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultures compared to bare niosomes. The resulting SPR measurements were further supported by confocal microscopy and flow cytometry studies, which demonstrated that this method is a useful complementary or even alternative tool to directly characterize the interactions between niosomes and in vitro cell models in label-free and real-time conditions.


Assuntos
Quitosana , Lipossomos , Humanos , Células CACO-2 , Intestinos
8.
J Extracell Vesicles ; 11(4): e12202, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35362268

RESUMO

With an exponential increase in extracellular vesicle (EV) studies in the past decade, focus has been placed on standardization of experimental design to ensure inter-study comparisons and validity of conclusions. In the case of in vitro assays, the composition of cell culture media is important to consider for EV studies. In particular, levels of lipoproteins, which are critical components of the interstitial fluid, should be taken into consideration. Results from this study reveal that lipoprotein levels in cell culture medium impact the effects that EVs have on recipient cells. Additionally, evidence of EV binding and fusion to lipoprotein-like structures in plasma is provided. However, it is unclear whether the impact of lipoproteins in cell culture is due to direct interactions with EVs, indirect effects, or a combination of both mechanisms. Taken together, cell culture studies performed in the absence of physiological levels of lipoproteins are unlikely to reflect interactions that occur between EVs and recipient cells in an in vivo environment.


Assuntos
Vesículas Extracelulares , Bioensaio , Técnicas de Cultura de Células , Vesículas Extracelulares/metabolismo , Testes Imunológicos , Lipoproteínas/metabolismo
9.
Nano Today ; 392021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33968157

RESUMO

Extracellular vesicles (EVs) are cell-released lipid-bilayer nanoparticles that contain biologically active cargo involved in physiological and pathological intercellular communication. In recent years, the therapeutic potential of EVs has been explored in various disease models. In particular, mesenchymal stromal cell-derived EVs have been shown to exert anti-inflammatory, anti-oxidant, anti-apoptotic, and pro-angiogenic properties in cardiovascular, metabolic and orthopedic conditions. However, a major drawback of EV-based therapeutics is scale-up issues due to extensive cell culture requirements and inefficient isolation protocols. An emerging alternative approach to time-consuming and costly cell culture expansion is to obtain therapeutic EVs directly from the body, for example, from plasma and adipose tissue. This review discusses isolation methods and therapeutic applications of plasma and adipose tissue-derived EVs, highlighting advantages and disadvantages compared to cell culture-derived ones.

10.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924377

RESUMO

Extracellular vesicles (EVs) mediate intercellular transport of biomolecular cargo in the body, making them promising delivery vehicles for bioactive compounds. Genetic engineering of producer cells has enabled encapsulation of therapeutic proteins in EVs. However, genetic engineering approaches can be expensive, time-consuming, and incompatible with certain EV sources, such as human plasma and bovine milk. The goal of this study was to develop a quick, versatile, and simple method for loading proteins in EVs post-isolation. Proteins, including CRISPR associated protein 9 (Cas9), were bound to cationic lipids that were further complexed with MDA-MB-231 cell-derived EVs through passive incubation. Size-exclusion chromatography was used to remove components that were not complexed with EVs. The ability of EVs to mediate intracellular delivery of proteins was compared to conventional methods, such as electroporation and commercial protein transfection reagents. The results indicate that EVs retain native features following protein-loading and obtain similar levels of intracellular protein delivery as conventional methods, but display less toxicity. This method opens up opportunities for rapid exploration of EVs for protein delivery.

11.
Adv Exp Med Biol ; 1295: 3-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33543453

RESUMO

Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.


Assuntos
Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
12.
Pharmaceutics ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056912

RESUMO

Extracellular vesicles (EVs) are cell-released nanoparticles that transfer biomolecular content between cells. Among EV-associated biomolecules, microRNAs (miRNAs/miRs) represent one of the most important modulators of signaling pathways in recipient cells. Previous studies have shown that EVs from adipose-derived mesenchymal stromal cells (MSCs) and adipose tissue modulate inflammatory pathways in macrophages. In this study, the effects of miRNAs that are abundant in adipose tissue EVs and other biogenic nanoparticles (BiNPs) were assessed in terms of altering Toll-like receptor 4 (TLR4)-induced cytokines. TLR-4 signaling in macrophages is often triggered by pathogen or damage-induced inflammation and is associated with several diseases. This study demonstrates that miR-451a, which is abundant in adipose tissue BiNPs, suppresses pro-inflammatory cytokines and increases anti-inflammatory cytokines associated with the TLR4 pathway. Therefore, miR-451a may be partially responsible for immunomodulatory effects of adipose tissue-derived BiNPs.

13.
Colloids Surf B Biointerfaces ; 193: 111152, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535351

RESUMO

Glycyrrhiza glabra L. is a native plant of Central and South-Western Asia that is also diffused in the Mediterranean area and contains several bioactive compounds such as: flavonoids, sterols, triterpene and saponins. Glycyrrhizin, containing glycyrrhizic and glycyrrhizinic acids has anti-inflammatory and antiallergic effects that are similar to corticosteroids. Ammonium glycyrrhizinate is a derivative salt of glycyrrhizic acid with similar anti-inflammatory activity that cannot pass through the skin due to its physicochemical properties and molecular weight. Although several nanoformulations, such as ethosomes, are designed to provide a systemic effect through a topical application, there are different limitations to the distribution inside the blood stream. For this reason, ultradeformable liposomes, or transfersomes, are selected to improve the topical delivery of drugs and allow the distribution of payloads in the blood stream because they pass intact through the stratum corneum epidermis barrier, due to the presence of sodium cholate, aqueous cutaneous gradient, and the rapid penetration of transfersomes by cutaneous tight junctions, thus allowing the systemic delivery of different therapeutic cargo in non-occlusive conditions. The aim of this work was the synthesis and physicochemical characterization of the ammonium glycyrrhizinate-loaded ultradeformable liposomes, the evaluation of drug release and permeation through stratum corneum and epidermis barrier. The in vivo anti-inflammatory effect of ammonium glycyrrhizinate-loaded ultradeformable liposomes was tested on human healthy volunteers. The results demonstrated that the ammonium glycyrrhizinate-loaded ultradeformable liposomes decreased the skin inflammation on the human volunteers and the resulting nanoformulations can be used as a potential topical drug delivery system for anti-inflammatory therapy. ☆Parts of these results were presented as a poster communication at the Recent Developments in Pharmaceutical Analysis 2019 (RDPA 2019), Chieti, Italy.


Assuntos
Anti-Inflamatórios/farmacologia , Sistemas de Liberação de Medicamentos , Eritema/tratamento farmacológico , Ácido Glicirrízico/farmacologia , Inflamação/tratamento farmacológico , Pele/efeitos dos fármacos , Administração Tópica , Adulto , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Eritema/induzido quimicamente , Glycyrrhiza/química , Ácido Glicirrízico/administração & dosagem , Ácido Glicirrízico/química , Voluntários Saudáveis , Humanos , Inflamação/induzido quimicamente , Lipossomos/química , Ácidos Nicotínicos , Tamanho da Partícula , Propriedades de Superfície
14.
Oncotarget ; 9(46): 27998-28008, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963257

RESUMO

PROBLEM STATEMENT: Chemotherapy-induced peripheral neuropathy (CIPN) is a widespread and potentially disabling side effect of various anticancer drugs. In spite of the intensive research focused on obtaining therapies capable to treat or prevent CIPN, the medical demand remains very high. Microtubule-stabilizing agents, among which taxanes, are effective chemotherapeutic agents for the therapy of several oncologic diseases. The inflammatory process activated by chemotherapeutic agents has been interpreted as a potential trigger of the nociceptive process in CIPN. The chemotherapy-driven release of proinflammatory and chemokines has been recognized as one of the principal mechanisms controlling the establishment of CIPN. Several reports have indicated that probiotics are capable to regulate the balance of anti-inflammatory and pro-inflammatory cytokines. Accordingly, it has been suggested that some probiotic formulations, may have an effective role in the management of inflammatory pain symptoms. Experimental approaches used: we tested the hypothesis that paclitaxel-induced neuropathic pain can be counteracted by the probiotic DSF by using an in vitro model of sensitive neuron, the F11 cells. On this model, the biomolecular pathways involved in chemotherapy induced peripheral neuropathy depending on inflammatory cytokines were investigated by Real-time PCR, Western blotting and confocal microscopy. General conclusions: the results obtained, i.e. the increase of acetylated tubulin, the increase of the active forms of proteins involved in the establishment of neuropathic pain, point towards the use of this probiotic formulation as a possible adjuvant agent for counteracting CINP symptoms.

15.
Int J Mol Sci ; 19(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966227

RESUMO

Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.


Assuntos
Neoplasias/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Humanos , Neoplasias/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
16.
Int J Mol Sci ; 19(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949869

RESUMO

Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.


Assuntos
Adaptação Fisiológica , Diferenciação Celular , Metabolismo Energético , Neurogênese , Neurônios/citologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...