Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36004905

RESUMO

Circulating Tumor Cells (CTCs) are shed from primary tumors and travel through the blood, generating metastases. CTCs represents a useful tool to understand the biology of metastasis in cancer disease. However, there is a lack of standardized protocols to isolate and culture them. In our previous work, we presented oil-in-water nanoemulsions (NEs) composed of lipids and fatty acids, which showed a benefit in supporting CTC cultures from metastatic breast cancer patients. Here, we present Peptide-Functionalized Nanoemulsions (Pept-NEs), with the aim of using them as a tool for CTC isolation and culture in situ. Therefore, NEs from our previous work were surface-decorated with the peptides Pep10 and GE11, which act as ligands towards the specific cell membrane proteins EpCAM and EGFR, respectively. We selected the best surface to deposit a layer of these Pept-NEs through a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method. Next, we validated the specific recognition of Pept-NEs for their protein targets EpCAM and EGFR by QCM-D and fluorescence microscopy. Finally, a layer of Pept-NEs was deposited in a culture well-plate, and cells were cultured on for 9 days in order to confirm the feasibility of the Pept-NEs as a cell growth support. This work presents peptide-functionalized nanoemulsions as a basis for the development of devices for the isolation and culture of CTCs in situ due to their ability to specifically interact with membrane proteins expressed in CTCs, and because cells are capable of growing on top of them.

2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502201

RESUMO

BACKGROUND: Cancer metastasis is a deathly process, and a better understanding of the different steps is needed. The shedding of circulating tumor cells (CTCs) and CTC-cluster from the primary tumor, its survival in circulation, and homing are key events of the metastasis cascade. In vitro models of CTCs and in vivo models of metastasis represent an excellent opportunity to delve into the behavior of metastatic cells, to gain understanding on how secondary tumors appear. METHODS: Using the zebrafish embryo, in combination with the mouse and in vitro assays, as an in vivo model of the spatiotemporal development of metastases, we study the metastatic competency of breast cancer CTCs and CTC-clusters and the molecular mechanisms. RESULTS: CTC-clusters disseminated at a lower frequency than single CTCs in the zebrafish and showed a reduced capacity to invade. A temporal follow-up of the behavior of disseminated CTCs showed a higher survival and proliferation capacity of CTC-clusters, supported by their increased resistance to fluid shear stress. These data were corroborated in mouse studies. In addition, a differential gene signature was observed, with CTC-clusters upregulating cell cycle and stemness related genes. CONCLUSIONS: The zebrafish embryo is a valuable model system to understand the biology of breast cancer CTCs and CTC-clusters.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Células Neoplásicas Circulantes , Peixe-Zebra/embriologia , Animais , Linhagem Celular Tumoral , Embrião não Mamífero , Feminino , Humanos , Células MCF-7 , Camundongos , Metástase Neoplásica
3.
Cancers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071445

RESUMO

BACKGROUND: Circulating tumor cells (CTC) have relevance as prognostic markers in breast cancer. However, the functional properties of CTCs or their molecular characterization have not been well-studied. Experimental models indicate that only a few cells can survive in the circulation and eventually metastasize. Thus, it is essential to identify these surviving cells capable of forming such metastases. METHODS: We isolated viable CTCs from 50 peripheral blood samples obtained from 35 patients with advanced metastatic breast cancer using RosetteSepTM for ex vivo culture. The CTCs were seeded and monitored on plates under low adherence conditions and with media supplemented with growth factors and Nanoemulsions. Phenotypic analysis was performed by immunofluorescence and gene expression analysis using RT-PCR and CTCs counting by the Cellsearch® system. RESULTS: We found that in 75% of samples the CTC cultures lasted more than 23 days, predicting a shorter Progression-Free Survival in these patients, independently of having ≥5 CTC by Cellsearch®. We also observed that CTCs before and after culture showed a different gene expression profile. CONCLUSIONS: the cultivability of CTCs is a predictive factor. Furthermore, the subset of cells capable of growing ex vivo show stem or mesenchymal features and may represent the CTC population with metastatic potential in vivo.

4.
Plant Cell ; 24(2): 589-607, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22327741

RESUMO

Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of ß-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane-located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Celulose/biossíntese , Quitinases/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Quitinases/genética , Glicosídeo Hidrolases/genética , Microfibrilas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...