Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 90(10): 5090-5097, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962223

RESUMO

UNLABELLED: The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. IMPORTANCE: Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Epitopos , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Reações Cruzadas , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Engenharia Genética , Humanos , Camundongos , Testes de Neutralização , Sorogrupo
2.
Science ; 349(6243): 88-91, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138979

RESUMO

There are four closely-related dengue virus (DENV) serotypes. Infection with one serotype generates antibodies that may cross-react and enhance infection with other serotypes in a secondary infection. We demonstrated that DENV serotype 2 (DENV2)-specific human monoclonal antibody (HMAb) 2D22 is therapeutic in a mouse model of antibody-enhanced severe dengue disease. We determined the cryo-electron microscopy (cryo-EM) structures of HMAb 2D22 complexed with two different DENV2 strains. HMAb 2D22 binds across viral envelope (E) proteins in the dimeric structure, which probably blocks the E protein reorganization required for virus fusion. HMAb 2D22 "locks" two-thirds of or all dimers on the virus surface, depending on the strain, but neutralizes these DENV2 strains with equal potency. The epitope defined by HMAb 2D22 is a potential target for vaccines and therapeutics.


Assuntos
Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/ultraestrutura , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Coinfecção/imunologia , Reações Cruzadas , Microscopia Crioeletrônica , Modelos Animais de Doenças , Epitopos/imunologia , Humanos , Camundongos , Sorogrupo
3.
EMBO Mol Med ; 6(3): 358-71, 2014 03.
Artigo em Inglês | MEDLINE | ID: mdl-24421336

RESUMO

Dengue virus (DENV), which consists of four serotypes (DENV1-4), infects over 400 million people annually. Previous studies have indicated most human monoclonal antibodies (HMAbs) from dengue patients are cross-reactive and poorly neutralizing. Rare neutralizing HMAbs are usually serotype-specific and bind to quaternary structure-dependent epitopes. We determined the structure of DENV1 complexed with Fab fragments of a highly potent HMAb 1F4 to 6 Å resolution by cryo-EM. Although HMAb 1F4 appeared to bind to virus and not E proteins in ELISAs in the previous study, our structure showed that the epitope is located within an envelope (E) protein monomer, and not across neighboring E proteins. The Fab molecules bind to domain I (DI), and DI-DII hinge of the E protein. We also showed that HMAb 1F4 can neutralize DENV at different stages of viral entry in a cell type and receptor dependent manner. The structure reveals the mechanism by which this potent and specific antibody blocks viral infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/metabolismo , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular , Dengue/tratamento farmacológico , Dengue/veterinária , Epitopos/química , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/química , Internalização do Vírus/efeitos dos fármacos
4.
mBio ; 4(6): e00873-13, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24255124

RESUMO

UNLABELLED: Following natural dengue virus (DENV) infection, humans produce some antibodies that recognize only the serotype of infection (type specific) and others that cross-react with all four serotypes (cross-reactive). Recent studies with human antibodies indicate that type-specific antibodies at high concentrations are often strongly neutralizing in vitro and protective in animal models. In general, cross-reactive antibodies are poorly neutralizing and can enhance the ability of DENV to infect Fc receptor-bearing cells under some conditions. Type-specific antibodies at low concentrations also may enhance infection. There is an urgent need to determine whether there are conserved antigenic sites that can be recognized by cross-reactive potently neutralizing antibodies. Here, we describe the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) directed to the DENV domain II fusion loop (FL) envelope protein region from subjects following vaccination or natural infection. Most of the FL-specific antibodies exhibited a conventional phenotype, characterized by low-potency neutralizing function and antibody-dependent enhancing activity. One clone, however, recognized the bc loop of domain II adjacent to the FL and exhibited a unique phenotype of ultrahigh potency, neutralizing all four serotypes better than any other previously described MAb recognizing this region. This antibody not only neutralized DENV effectively but also competed for binding against the more prevalent poor-quality antibodies whose binding was focused on the FL. The 1C19 human antibody could be a promising component of a preventative or therapeutic intervention. Furthermore, the unique epitope revealed by 1C19 suggests a focus for rational vaccine design based on novel immunogens presenting cross-reactive neutralizing determinants. IMPORTANCE: With no effective vaccine available, the incidence of dengue virus (DENV) infections worldwide continues to rise, with more than 390 million infections estimated to occur each year. Due to the unique roles that antibodies are postulated to play in the pathogenesis of DENV infection and disease, there is consensus that a successful DENV vaccine must protect against all four serotypes. If conserved epitopes recognized by naturally occurring potently cross-neutralizing human antibodies could be identified, monovalent subunit vaccine preparations might be developed. We characterized 30 DENV cross-neutralizing human monoclonal antibodies (MAbs) and identified one (1C19) that recognized a novel conserved site, known as the bc loop. This antibody has several desirable features, as it neutralizes DENV effectively and competes for binding against the more common low-potency fusion loop (FL) antibodies, which are believed to contribute to antibody-mediated disease. To our knowledge, this is the first description of a potent serotype cross-neutralizing human antibody to DENV.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Vírus da Dengue/imunologia , Epitopos de Linfócito B/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Humanos
5.
J Virol ; 85(14): 7273-83, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21543469

RESUMO

Many individuals infected with hepatitis C virus (HCV) develop a chronic infection, and of those who are treated with pegylated interferon and ribavirin (RBV), many do not respond. While the nucleoside analog RBV improves treatment outcome, and will likely be an important component of therapy with next-generation viral inhibitors, RBV's mechanism is controversial. Most of RBV's proposed mechanisms require RBV import into cells. Therefore, we explored whether host-based RBV resistance develops through reduced cellular uptake, akin to chemotherapy resistance in some cancers. We examined the effect of host-based RBV resistance on HCV replication in cultured hepatoma Huh7.5 liver cells and whether RBV resistance develops in HCV patients. When Huh7.5 cells were exposed to RBV, resistance developed through reduced RBV uptake via the ENT1 nucleoside transporter and antiviral efficacy was reduced. The uptake defect in RBV-resistant cells was specific to RBV, since transport of another ENT1 substrate, cytidine, was unaffected. Importantly, RBV uptake significantly declined in HCV patient peripheral blood mononuclear cells (PBMCs) following 4 weeks of therapy. Furthermore, maintenance of RBV uptake correlated with rapid treatment response. Our results uncovered a novel form of antiviral drug resistance and suggest that host-based RBV resistance develops in HCV patients undergoing therapy and that maintenance of RBV uptake may contribute to rapid viral clearance.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Ribavirina/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Viral , Hepacivirus/fisiologia , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Virol ; 83(9): 4538-47, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19244331

RESUMO

Treatment for hepatitis C virus infection currently consists of pegylated interferon and ribavirin (RBV), a nucleoside analog. Although RBV clearly plays a role in aiding the treatment response, its antiviral mechanism is unclear. Regardless of the specific mechanism of RBV, we hypothesize that differences in levels of cellular uptake of RBV may affect antiviral efficacy and treatment success and that cells may become RBV resistant through reduced uptake. We monitored RBV uptake in various cell lines and determined the effect of uptake capacity on viral replication. RBV-resistant cells demonstrated reduced RBV uptake and increased growth of a model RNA virus, poliovirus, in the presence of RBV. Overexpression of equilibrative nucleoside transporter 1 (ENT1) or concentrative nucleoside transporter 3 (CNT3) increased RBV uptake in RBV-sensitive cell lines and restored the uptake defect in most RBV-resistant cell lines. However, CNT3 is not expressed in Huh-7 liver cells, and inhibition of concentrative transport did not affect RBV uptake. Blocking equilibrative transport using the inhibitor nitrobenzylmercaptopurine riboside recapitulated the RBV-resistant phenotype in RBV-sensitive cell lines, with a reduction in RBV uptake and increased poliovirus growth. Taken together, these results indicate that RBV uptake is restricted primarily to ENT1 in the cell lines examined. Interestingly, some RBV-resistant cell lines may compensate for reduced ENT1-mediated nucleoside uptake by increasing the activity of an alternative nucleoside transporter, ENT2. It is possible that RBV uptake affects the antiviral treatment response, either through natural differences in patients or through acquired resistance.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Proteínas de Transporte de Nucleosídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleosídeos/metabolismo , Ribavirina/farmacologia , Linhagem Celular Tumoral , Separação Celular , Hepacivirus/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...