Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(26): 28018-28027, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973934

RESUMO

In this work, the (TiO2)20 cluster is proposed to adsorb the methylene blue (BM) dye; thus, the quantum parameters to explain the adsorption process are calculated by means of density functional theory calculations. Eight possible configurations are obtained and labeled from M1 to M8. According to the adsorption energy values, they reveal physisorption for at least two cases, and for the rest of the systems, they exhibit chemisorption. The preferential positions that lead to good adsorption for the BM dye are parallel to the semiconductor cluster; however, when one end of the BM dye formed by hydrogen atoms is interacting with the cluster, a weak chemical interaction is reached. The chemical interactions for M4 and M5 systems generate considerable increases of their electronic gap values (E g) with respect to the rest, and this effect is explained based on iso-surfaces of frontier orbitals and electronic charge transference. The chemical interactions between these chemical species are stable under vibrational and thermal criteria. This semiconductor cluster arises as a good candidate to adsorb some dyes like BM.

2.
ACS Omega ; 7(38): 34401-34411, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188309

RESUMO

In order to obtain the structural and electronic properties of pristine copper clusters and Cu13-SF6, Cu43-SF6, Cu55-SF6, Cu13-2SF6, Cu43-2SF6, and Cu55-2SF6 systems, DFT calculations were carried out. For Cu13-mSF6, its surface suffers a drastic deformation, and Cu43-mSF6 at its outer surface reveals strong interaction for the first chemical molecule; when the second molecule is interacting, these outer surfaces are not severely affected. These two cases degraded fully the first SF6 molecule; however the second molecule is bonded to the latter systems and for Cu55-mSF6 (m = 1 and 2) a structural transformation from SF6 →SF4 appears as well as inner and outer shells that display slight deformations. The electronic gaps do not exhibit drastic changes after adsorption of mSF6 molecules, and the magnetic moment remains without alterations. The whole system shows thermal and vibrational stability. In addition, for Cu13-mSF6 the values of the optical gap and intensity of the optical exhibit changes with respect to the pristine case (Cu13), and the rest of the systems do not exhibit major oscillations. These icosahedral copper clusters emerge as a good option to degrade mSF6 molecules.

3.
Phys Chem Chem Phys ; 20(43): 27545-27557, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30371696

RESUMO

We have combined a neural network formalism with metaheuristic structural global search algorithms to systematically screen the Mg-Ca binary system for new (meta)stable alloys. The combination of these methods allows for an efficient exploration of the potential energy surface beyond the possibility of the traditional searches based on ab initio energy evaluations. The identified pool of low-enthalpy structures was complemented with special quasirandom structures (SQS) at different stoichiometries. In addition to the only Mg-Ca phase known to form under standard synthesis conditions, C14-Mg2Ca, the search has uncovered several candidate materials that could be synthesized under elevated temperatures or pressures. We show that the vibrational entropy lowers the relative free energy of several phases with magnesium kagome layers: C15 and C36 Laves structures at the 2 : 1 composition and an orthorhombic oS36 structure at the 7 : 2 composition. The estimated phase transition temperatures close to the melting point leave open the possibility of synthesizing the predicted materials at high temperatures. At high pressures up to 10 GPa, two new phases at the 1 : 1 and 3 : 1 Mg : Ca stoichiometries become thermodynamically stable and should form in multi-anvil experiments.

4.
Sci Rep ; 8(1): 14313, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254275

RESUMO

The Mn valence in thin film La0.7Sr0.3MnO3 was studied as a function of film thickness in the range of 1-16 unit cells with a combination of non-destructive bulk and surface sensitive X-ray absorption spectroscopy techniques. Using a layer-by-layer valence model, it was found that while the bulk averaged valence hovers around its expected value of 3.3, a significant deviation occurs within several unit cells of the surface and interface. These results were supported by first principles calculations. The surface valence increases to up to Mn3.7+, whereas the interface valence reduces down to Mn2.5+. The change in valence from the expected bulk value is consistent with charge redistribution due to the polar discontinuity at the film-substrate interface. The comparison with theory employed here illustrates how this layer-by-layer valence evolves with film thickness and allows for a deeper understanding of the microscopic mechanisms at play in this effect. These results offer insight on how the two-dimensional electron gas is created in thin film oxide alloys and how the magnetic ordering is reduced with dimensionality.

5.
Nano Lett ; 18(8): 5091-5097, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30044921

RESUMO

Wurtzite semiconductor compounds have two silent modes, B1 l and B1 h. A silent mode is a vibrational mode that carries neither a dipole moment nor Raman polarizability. Thus, they are forbidden in both infrared reflectivity and Raman spectroscopy. Astonishingly, we detected the B1 l mode in high-quality, ultra-narrow GaN nanowires using resonant Raman scattering, although the B1 h was not observed, and there is no immediate explanation for this asymmetric finding. The Raman experiments were performed using several laser lines from 647 to 325 nm; the latter is a wavelength in which Raman becomes resonant. Actually, we observed the B1 l mode only in resonance, indicating that the appearance of this mode is related to Fröhlich electron-phonon interactions; i.e., a dipole moment emerging in the B1 l silent mode may not be present in the B1 h mode. To shed light onto the physical origin of these observations, we performed density functional theory calculations of the lattice dynamics in GaN. We performed a careful analysis of the different physical mechanisms that allow the forbidden mode to appear to explain the physics underlying the nonzero dipole moment in the B1 l mode, and the reason why this dipole moment is not present in the B1 h mode.

6.
Phys Chem Chem Phys ; 18(43): 29771-29785, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27722708

RESUMO

Semi-conducting alloys BixSb1-x have emerged as a potential candidate for topological insulators and are well known for their novel thermoelectric properties. In this work, we present a systematic study of the low-energy phases of 35 different compositions of BixSb1-x (0 < x < 1) at zero temperature and zero pressure. We explore the potential energy surface of BixSb1-x as a function of Sb concentration by using the ab initio minima hopping structural search method. Even though Bi and Sb crystallize in the same R3[combining macron]m space group, our calculations indicate that BixSb1-x alloys can have several other thermodynamically stable crystal structures. In addition to the configurations on the convex hull, we find a large number of metastable structures which are dynamically stable. The electronic band structure calculations of several stable phases reveal the presence of strong spin-orbit interaction leading to the Rashba-Dresselhaus spin-splitting of bands which is of great interest for spintronics applications. We also find an orthorhombic structure of BiSb in the Imm2 space group which exhibits signatures of type-II Weyl semimetal. Additionally, we have studied the thermoelectric properties of the selected structures. Regarding thermoelectric properties, we find that the compositions which crystallize in the rhombohedral structure exhibit values of the Seebeck coefficient and the power factor similar to that of Bi2Te3 at room temperature, while the theoretical maximum figure of merit (ZeT) is smaller than that of Bi2Te3. We observe enhancement in the thermopower with the increase in the strength of the Rashba-Dresselhaus spin-splitting effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...