Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202252

RESUMO

Pressure injury (PI) is a major problem for patients that are bound to a wheelchair or bed, such as seniors or people with spinal cord injuries. This condition can be life threatening in its later stages. It can be very costly to the healthcare system as well. Fortunately with proper monitoring and assessment, PI development can be prevented. The major factor that causes PI is prolonged interface pressure between the body and the support surface. A possible solution to reduce the chance of developing PI is changing the patient's in-bed pose at appropriate times. Monitoring in-bed pressure can help healthcare providers to locate high-pressure areas, and remove or minimize pressure on those regions. The current clinical method of interface pressure monitoring is limited by periodic snapshot assessments, without longitudinal measurements and analysis. In this paper we propose a pressure signal analysis pipeline to automatically eliminate external artefacts from pressure data, estimate a person's pose, and locate and track high-risk regions over time so that necessary attention can be provided.


Assuntos
Úlcera por Pressão , Traumatismos da Medula Espinal , Cadeiras de Rodas , Humanos
2.
Biomed Res Int ; 2019: 2608547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915349

RESUMO

Methods of the electrocardiography (ECG) signal features extraction are required to detect heart abnormalities and different kinds of diseases. However, different artefacts and measurement noise often hinder providing accurate features extraction. One of the standard techniques developed for ECG signals employs linear prediction. Referring to the fact that prediction is not required for ECG signal processing, smoothing can be more efficient. In this paper, we employ the p-shift unbiased finite impulse response (UFIR) filter, which becomes smooth by p < 0. We develop this filter to have an adaptive averaging horizon: optimal for slow ECG behaviours and minimal for fast excursions. It is shown that the adaptive UFIR algorithm developed in such a way provides better denoising and suboptimal features extraction in terms of the output signal-noise ratio (SNR). The algorithm is developed to detect durations and amplitudes of the P-wave, QRS-complex, and T-wave in the standard ECG signal map. Better performance of the algorithm designed is demonstrated in a comparison with the standard linear predictor, UFIR filter, and UFIR predictive filter based on real ECG data associated with normal heartbeats.


Assuntos
Algoritmos , Arritmias Cardíacas/fisiopatologia , Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Feminino , Humanos , Masculino , Razão Sinal-Ruído
3.
Artigo em Inglês | MEDLINE | ID: mdl-23192817

RESUMO

This paper addresses the code reading error probability (EP) in radio-frequency identification (RFID) SAW tags with pulse position coding (PPC) and peak-pulse detection. EP is found in a most general form, assuming M groups of codes with N slots each and allowing individual SNRs in each slot. The basic case of zero signal in all off-pulses and equal signals in all on-pulses is investigated in detail. We show that if a SAW-tag with PPC is designed such that the spurious responses are attenuated by more than 20 dB below on-pulses, then EP can be achieved at the level of 10(-8) (one false read per 108 readings) with SNR >17 dB for any reasonable M and N. The tag reader range is estimated as a function of the transmitted power and EP.

4.
Artigo em Inglês | MEDLINE | ID: mdl-16382631

RESUMO

This paper discusses approximate statistical estimates of limiting errors associated with single differential phase measurement of a time delay (phase difference) between two reflectors of the passive surface acoustic wave (SAW) sensor. The remote wireless measurement is provided at the ideal coherent receiver using the maximum likelihood function approach. Approximate estimates of the mean error, mean square error, estimate variance, and Cramér-Rao bound are derived along with the error probability to exceed a threshold in a wide range of signal-to-noise ratio (SNR) values. The von Mises/Tikhonov distribution is used as an approximation for the phase difference and differential phase diversity. Simulation of the random phase difference and limiting errors also is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...