Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1045269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845442

RESUMO

Periodic Cheyne-Stokes breathing (CSB) oscillating between apnea and crescendo-decrescendo hyperpnea is the most common central apnea. Currently, there is no proven therapy for CSB, probably because the fundamental pathophysiological question of how the respiratory center generates this form of breathing instability is still unresolved. Therefore, we aimed to determine the respiratory motor pattern of CSB resulting from the interaction of inspiratory and expiratory oscillators and identify the neural mechanism responsible for breathing regularization induced by the supplemental CO2 administration. Analysis of the inspiratory and expiratory motor pattern in a transgenic mouse model lacking connexin-36 electrical synapses, the neonatal (P14) Cx36 knockout male mouse, with a persistent CSB, revealed that the reconfigurations recurrent between apnea and hyperpnea and vice versa result from cyclical turn on/off of active expiration driven by the expiratory oscillator, which acts as a master pacemaker of respiration and entrains the inspiratory oscillator to restore ventilation. The results also showed that the suppression of CSB by supplemental 12% CO2 in inhaled air is due to the stabilization of coupling between expiratory and inspiratory oscillators, which causes the regularization of respiration. CSB rebooted after washout of CO2 excess when the inspiratory activity depressed again profoundly, indicating that the disability of the inspiratory oscillator to sustain ventilation is the triggering factor of CSB. Under these circumstances, the expiratory oscillator activated by the cyclic increase of CO2 behaves as an "anti-apnea" center generating the crescendo-decrescendo hyperpnea and periodic breathing. The neurogenic mechanism of CSB identified highlights the plasticity of the two-oscillator system in the neural control of respiration and provides a rationale base for CO2 therapy.

2.
Physiol Rep ; 9(21): e15109, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755471

RESUMO

Neural circuits at the brainstem involved in the central generation of the motor patterns of respiration and cardiorespiratory chemoreflexes organize as cell assemblies connected by chemical and electrical synapses. However, the role played by the electrical connectivity mainly mediated by connexin36 (Cx36), which expression reaches peak value during the postnatal period, is still unknown. To address this issue, we analyzed here the respiratory phenotype of a mouse strain devoid constitutively of Cx36 at P14. Male Cx36-knockout mice at rest showed respiratory instability of variable degree, including a periodic Cheyne-Stokes breathing. Moreover, mice lacking Cx36 exhibited exacerbated chemoreflexes to normoxic and hypoxic hypercapnia characterized by a stronger inspiratory/expiratory coupling due to an increased sensitivity to CO2 . Deletion of Cx36 also impaired the generation of the recurrent episodes of transient bradycardia (ETBs) evoked during hypercapnic chemoreflexes; these EBTs constituted a powerful mechanism of cardiorespiratory coupling capable of improving alveolar gaseous exchange under hypoxic hypercapnia conditions. Approximately half of the homo- and heterozygous Cx36KO, but none WT, mice succumbed by respiratory arrest when submitted to hypoxia-hypercapnia, the principal exogenous stressor causing sudden infant death syndrome (SIDS). The early suppression of EBTs, which worsened arterial O2  saturation, and the generation of a paroxysmal generalized clonic-tonic activity, which provoked the transition from eupneic to gasping respiration, were the critical events causing sudden death in the Cx36KO mice. These results indicate that Cx36 expression plays a pivotal role in respiratory control, cardiorespiratory coordination, and protection against SIDS at the postnatal period.


Assuntos
Conexinas/genética , Respiração , Morte Súbita do Lactente/genética , Animais , Conexinas/metabolismo , Feminino , Deleção de Genes , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo , Centro Respiratório/metabolismo , Centro Respiratório/fisiopatologia , Proteína delta-2 de Junções Comunicantes
3.
Front Syst Neurosci ; 8: 50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782720

RESUMO

Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

4.
Front Syst Neurosci ; 5: 77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949504

RESUMO

Local field potentials (LFPs) capture the electrical activity produced by principal cells during integration of converging synaptic inputs from multiple neuronal populations. However, since synaptic currents mix in the extracellular volume, LFPs have complex spatiotemporal structure, making them hard to exploit. Here we propose a biophysical framework to identify and separate LFP-generators. First we use a computational multineuronal model that scales up single cell electrogenesis driven by several synaptic inputs to realistic aggregate LFPs. This approach relies on the fixed but distinct locations of synaptic inputs from different presynaptic populations targeting a laminated brain structure. Thus the LFPs are contributed by several pathway-specific LFP-generators, whose electrical activity is defined by the spatial distribution of synaptic terminals and the time course of synaptic currents initiated in target cells by the corresponding presynaptic population. Then we explore the efficacy of independent component analysis to blindly separate converging sources and reconstruct pathway-specific LFP-generators. This approach can optimally locate synaptic inputs with subcellular accuracy while the reconstructed time course of pathway-specific LFP-generators is reliable in the millisecond scale. We also describe few cases where the non-linear intracellular interaction of strongly overlapping LFP-generators may lead to a significant cross-contamination and the appearance of derivative generators. We show that the approach reliably disentangle ongoing LFPs in the hippocampus into contribution of several LFP-generators. We were able to readout in parallel the pathway-specific presynaptic activity of projection cells in the entorhinal cortex and pyramidal cells in the ipsilateral and contralateral CA3. Thus we provide formal mathematical and experimental support for parallel readout of the activity of converging presynaptic populations in working neuronal circuits from common LFPs.

5.
J Neurosci ; 30(48): 16249-61, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21123571

RESUMO

Fast ripples are a type of transient high-frequency oscillations recorded from the epileptogenic regions of the hippocampus and the temporal cortex of epileptic humans and rodents. These events presumably reflect hypersynchronous bursting of pyramidal cells. However, the oscillatory spectral content of fast ripples varies from 250 to 800 Hz, well above the maximal firing frequency of most hippocampal pyramidal neurons. How such high-frequency oscillations are generated is therefore unclear. Here, we combine computational simulations of fast ripples with multisite and juxtacellular recordings in vivo to examine the underlying mechanisms in the hippocampus of epileptic rats. We show that populations of bursting cells firing individually at 100-400 Hz can create fast ripples according to two main firing regimes: (1) in-phase synchronous firing resulting in "pure" fast ripples characterized by single spectral peaks that reflect single-cell behavior and (2) out-of-phase firing that results in "emergent" fast ripples. Using simulations, we found that fast ripples generated under these two different regimes can be quantitatively separated by their spectral characteristics, and we took advantage of this separability to examine their dynamics in vivo. We found that in-phase firing can reach frequencies up to 300 Hz in the CA1 and up to 400 Hz in the dentate gyrus. The organization of out-of-phase firing is determined by firing delays between cells discharging at low frequencies. The two firing regimes compete dynamically, alternating randomly from one fast ripple event to the next, and they reflect the functional dynamic organization of the different regions of the hippocampus.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiologia , Periodicidade , Animais , Ratos , Ratos Wistar , Fatores de Tempo
6.
Biophys J ; 92(12): 4216-32, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17400694

RESUMO

Spreading depression (SD) is a pathological wave of transient neuronal inactivation. We recently reported that the characteristic sustained complete depolarization is restricted to specific cell domains where the input resistance (R(in)) first becomes negligible before achieving partial recovery, whereas in adjacent, more polarized membranes it drops by much less. The experimental study of the participating membrane channels is hindered by their mixed contribution and heterogeneous distribution. Therefore, we derived a biophysical model to analyze the conductances that replicate the subcellular profile of R(in) during SD. Systematic variation of conductance densities far beyond the ranges reported failed to fit the experimental values. Besides standard potassium, sodium, and Glu-mediated conductances, the initial opening and gradual closing of an as yet undetermined large conductance is required to account for the evolution of R(in). Potassium conductances follow in the relative contribution and their closing during the late phase is also predicted. Large intracellular potential gradients from zero to rest are readily sustained between shunted and adjacent SD-spared membranes, which remain electroregenerative. The gradients are achieved by a combination of high-conductance subcellular domains and transmembrane ion redistribution in extended but discrete dendritic domains. We conclude that the heterogeneous subcellular behavior is due to local membrane properties, some of which may be specifically activated under extreme SD conditions.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Dendritos/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Simulação por Computador , Humanos , Potenciais da Membrana/fisiologia , Modelos Estatísticos
7.
Eur J Neurosci ; 23(5): 1219-33, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16553784

RESUMO

Recent studies on the initiation and propagation of dendritic spikes have modified the classical view of postsynaptic integration. Earlier we reported that subthreshold currents and spikes recruited by synaptic currents play a critical role in defining outputs following synchronous activation. Experimental factors strongly condition these currents due to their nonlinear behaviour. Hence, we have performed a detailed parametric study in a CA1 pyramidal cell model to explore how different variables interact and initiate dendritic spiking, and how they influence cell output. The input pattern, the relative excitability of axon and dendrites, the presence/modulation of voltage-dependent channels, and inhibition were cross analysed. Subthreshold currents and spikes on synaptically excited branches fired spikes in other branches to jointly produce different modalities of apical shaft spiking with a variable impact on cell output. Synchronous activation initiated a varying number and temporal scatter of firing branches that produced in the apical shaft-soma axis nonpropagating spikes, pseudosaltatory or continuous forward conduction, or backpropagation. As few as 6-10 local spikes within a time window of 2 ms ensure cell output. However, the activation mode varied extremely when two or more variables were cross-analysed, becoming rather unpredictable when all the variables were considered. Spatially clustered inputs and upper modulation of dendritic Na(+) or Ca(2+) electrogenesis favour apical decision. In contrast, inhibition biased the output decision toward the axon and switched between dendritic firing modes. We propose that dendrites can discriminate input patterns and decide immediate cell output depending on the particular state of a variety of endogenous parameters.


Assuntos
Potenciais de Ação/fisiologia , Dendritos/metabolismo , Hipocampo/citologia , Modelos Teóricos , Células Piramidais/fisiologia , Hipocampo/fisiologia , Canais Iônicos/metabolismo , Células Piramidais/citologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...