Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38979935

RESUMO

A key characteristic of cancer cells is their ability to induce changes in their microenvironment that render it permissive to tumor growth, invasion and metastasis. Indeed, these changes are required for tumor progression. Consequently, the tumor microenvironment is emerging as a key source of new targets against cancer, with novel therapies aimed at reversing tumor-promoting changes, reinstating a tumor-hostile microenvironment and suppressing disease progression. RHO-ROCK signaling, and consequent tension within the cellular actomyosin cytoskeleton, regulates a paracrine signaling cascade that establishes a tumor-promoting microenvironment. Here, we show that consistent with our observations in breast cancer, enhanced ROCK activity and consequent production of CRELD2 is associated with the recruitment and tumor-promoting polarization of cancer-associated fibroblasts in cutaneous squamous cell carcinoma. Our observations provide support for the notion that the role of RHO-ROCK signaling in establishing a tumor-promoting microenvironment may be conserved across patients and potentially also different cancer types.

3.
Am J Pathol ; 183(3): 930-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23830873

RESUMO

Cutaneous squamous cell carcinomas (SCCs) are commonly diagnosed skin cancers that may progress to invasiveness in the absence of early intervention. Using a murine model of SCC, we have previously demonstrated that activation of the Rho-associated kinase (ROCK) signaling pathway promotes rapid progression of pre-neoplastic lesions to invasive SCC. Herein we demonstrate that in human cutaneous SCC, ROCK signaling is increasingly up-regulated with tumor progression in both tumor cells and cells of the tumor microenvironment and is accompanied by key tumor-promoting changes in the extracellular matrix protein composition. The mechanotransduction pathway mediated by integrin signaling through FAK, GSK3ß, and the transcription coactivator ß-catenin is also progressively activated in human cutaneous SCC. Our observations indicate that ROCK activation is a tumor promoter in human cutaneous SCC and acts via mechanotransduction of signals to ß-catenin. Our experiments raise the possibility that inhibition of ROCK signaling could be a useful therapeutic approach to halt cutaneous SCC progression by reducing the signal flux through this pathway to physiologic levels, thereby normalizing the extracellular matrix composition.


Assuntos
Carcinoma de Células Escamosas/patologia , Progressão da Doença , Mecanotransdução Celular , Neoplasias Cutâneas/patologia , Animais , Carcinoma de Células Escamosas/enzimologia , Moléculas de Adesão Celular/metabolismo , Colágeno/metabolismo , Derme/enzimologia , Derme/patologia , Modelos Animais de Doenças , Ativação Enzimática , Fibronectinas/metabolismo , Imunofluorescência , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Integrinas/metabolismo , Camundongos , Invasividade Neoplásica , Neoplasias Cutâneas/enzimologia , beta Catenina/metabolismo , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...