Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 6: 571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30525026

RESUMO

Cellulose nanofibrils (CNF) can be produced in the form of thin, transparent and flexible films. However, the permeability of such materials to oxygen and water vapor is very sensitive to moisture, which limits their potential for a variety of packaging and encapsulation applications. Diffusion barrier coatings were thus developed to reduce the access of water molecules to enzymatically pre-treated and carboxymethylated CNF substrates. The coatings were based on UV curable organic-inorganic hybrids with epoxy, tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethylenesilane (GPTS) precursors and additional vapor formed SiNx layers. A total of 14 monolayer and multilayer coatings with various thickness and hybrid composition were produced and analyzed. The water vapor transmission rate (WVTR) of the bilayer epoxy/CNF film was two times lower compared to that of uncoated CNF film. This was partly due to the water vapor permeability of the epoxy, a factor of two times lower than CNF. The epoxy coating improved the transparency of CNF, however it did not properly wet to the CNF surfaces and the interfacial adhesion was low. In contrast hybrid epoxy-silica coatings led to high adhesion levels owing to the formation of covalent interactions through condensation reactions with the OH-terminated CNF surface. The barrier and optical performance of hybrid coated CNF substrates was similar to that of CNF coated with pure epoxy. In addition, the hybrid coatings provided an excellent planarization effect, with roughness close to 1 nm, one to two orders of magnitude lower than that of the CNF substrates. The WVTR and oxygen transmission rate values of the hybrid coated CNF laminates were in the range 5-10 g/m2/day (at 38°C and 50% RH) and 3-6 cm3/m2/day/bar (at 23°C and 70% RH), respectively, which matches food and pharmaceutical packaging requirements. The permeability to water vapor of the hybrid coatings was moreover found to decrease with increasing the TEOS/GPTS ratio up to 30 wt% and then increase at higher ratio, and to be much lower for thinner coatings due to further UV-induced silanol condensation and faster evaporation of byproducts. The addition of a single 150 nm thick SiNx layer on the hybrid coated CNF improved its water vapor barrier performance by more than 680 times, with WVTR below the 0.02 g/m2/day detection limit.

2.
Opt Express ; 25(9): 10355-10367, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468408

RESUMO

A method of designing achromatic elliptical polarizers using a combination of multiple birefringent waveplates is demonstrated. This approach has a simple geometric interpretation and simplifies the problem of designing an achromatic elliptical polarizer to find overlapping arcs on the Poincaré sphere. The technique is applied to the design of achromatic elliptical polarizers for a broadband division-of-focal-plane full-Stokes imaging polarimeter for visible wavelength band (λ = 450nm to 650nm). An achromatic elliptical polarizer sample with a two-layer retarder is fabricated using liquid crystal polymer. The performance of the polarizer sample is measured and compared with the theoretical calculation. For comparison, a superachromatic polarizer design (λ = 400nm to 1µm) is also presented by using three-layer and four-layer retarder configurations.

3.
Opt Express ; 23(4): 4357-68, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836472

RESUMO

This paper presents a polarization microscope using an infrared (IR) full-Stokes imaging polarimeter. The IR polarimeter utilizes an optimized interference-based micropolarizer design, and provides full-Stokes images with resolution of 1608 × 1208 at 35 frames/second. The device fabrication, instrument calibration, performance evaluation, and measurement results are presented. The measurement error of the imaging polarimeter is less than 3.5%, and the standard deviations are less than 2%.

4.
Appl Opt ; 53(23): 5252-8, 2014 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25320936

RESUMO

The ability to create arbitrary patterned linear and circular infrared (IR) liquid crystal polymer (LCP) polarizers is demonstrated. The operating wavelength of the thin-film polarizer ranges from 700 to 4200 nm. The linear micropolarizer is fabricated using IR dichroic dye as a guest in LCP host with feature size as small as 4 µm. The circular micropolarizer is fabricated using cholesteric LCPs with feature size as small as 6.2 µm.

5.
Opt Express ; 22(3): 3063-74, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663597

RESUMO

In this paper, a full-Stokes imaging polarimeter operating at 580 nm using an array of elliptical polarizers is presented. The division-of-focal-plane polarimeter utilizes a set of four optimized measurements which represent a regular tetrahedron inscribed in the Poincaré sphere. Results from the device fabrication, instrument calibration and characterization are presented. The performance of the optimized full Stokes polarimeter, as defined by size of the standard deviation of the degree of circular polarization, is found to be approximately five times better than the performance of the simple full-Stokes polarimeter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...