Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36677191

RESUMO

A novel antenna structure is constructed from cascading multi-stage metamaterial (MTM) unit cells-based printed monopole antenna for 5G mobile communication networks. The proposed antenna is constructed from a printed conductive trace that fetches four MTM unit cells through four T-Resonators (TR) structures. Such a combination is introduced to enhance the antenna gain-bandwidth products at sub-6GHz bands after exiting the antenna with a coplanar waveguide (CPW) feed. The antenna circuitry is fabricated by etching a copper layer that is mounted on Taconic RF-43 substrate. Therefore, the proposed antenna occupies an effective area of 51 × 24 mm2. The proposed antenna provides an acceptable matching impedance with S11 ≤ -10 dB at 3.7 GHz, 4.6 GHz, 5.2 GHz, and 5.9 GHz. The antenna radiation patterns are evaluated at the frequency bands of interest with a gain average of 9.1-11.6 dBi. Later, to control the antenna performance, four optical switches based on LDR resistors are applied to control the antenna gain at 5.85 GHz, which is found to vary from 2 dBi to 11.6 dBi after varying the value of the LDR resistance from 700 Ω to 0 Ω, in descending manner. It is found that the proposed antenna provides an acceptable bit error rate (BER) with varying the antenna gain in a very acceptable manner in comparison to the ideal performance. Finally, the proposed antenna is fabricated to be tested experimentally in in free space and in close to the human body for portable applications.

2.
Micromachines (Basel) ; 13(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36557360

RESUMO

A novel design of a reconfigurable MIMO antenna array of a 3D geometry-based solar cell integration that is operating at sub-6 GHz for self-power applications in a 5G modern wireless communication network. The proposed antenna array provides three main frequency bands around 3.6 GHz, 3.9 GHz, and 4.9 GHz, with excellent matching impedance of S11 ≤ -10 dB. The proposed MIMO array is constructed from four antenna elements arranged on a cubical structure to provide a low mutual coupling, below -20 dB, over all frequency bands of interest. Each antenna element is excited with a coplanar waveguide (CPW). The proposed radiation patterns are controlled with two optical switches of Light Dependent Resistors (LDRs). The proposed antenna array is fabricated and tested experimentally in terms of S-parameters, gain and radiation patterns. The maximum gain is found to be 3.6 dBi, 6.9 dBi, and 3.5 dBi at 3.6 GHz, 3.9 GHz, and 4.9 GHz, respectively. It is realized that the proposed array realizes a significant beam forming by splitting the antenna beam and changing the main lobe direction at 3.9 GHz after changing LDR switching statuses. Such an antenna array is found to be very applicable for femtocell wireless communication networks in the 5G systems.

3.
Sci Rep ; 12(1): 16811, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207412

RESUMO

Detecting communities in networks is important in various domains of applications. While a variety of methods exist to perform this task, recent efforts propose Optimal Transport (OT) principles combined with the geometric notion of Ollivier-Ricci curvature to classify nodes into groups by rigorously comparing the information encoded into nodes' neighborhoods. We present an OT-based approach that exploits recent advances in OT theory to allow tuning between different transportation regimes. This allows for better control of the information shared between nodes' neighborhoods. As a result, our model can flexibly capture different types of network structures and thus increase performance accuracy in recovering communities, compared to standard OT-based formulations. We test the performance of our algorithm on both synthetic and real networks, achieving a comparable or better performance than other OT-based methods in the former case, while finding communities that better represent node metadata in real data. This pushes further our understanding of geometric approaches in their ability to capture patterns in complex networks.


Assuntos
Algoritmos , Modelos Teóricos , Características de Residência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...