Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13082, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567888

RESUMO

In recent years, COVID-19 has evolved into many variants, posing new challenges for disease control and prevention. The Omicron variant, in particular, has been found to be highly contagious. In this study, we constructed and analyzed a mathematical model of COVID-19 transmission that incorporates vaccination and three different compartments of the infected population: asymptomatic [Formula: see text], symptomatic [Formula: see text], and Omicron [Formula: see text]. The model is formulated in the Caputo sense, which allows for fractional derivatives that capture the memory effects of the disease dynamics. We proved the existence and uniqueness of the solution of the model, obtained the effective reproduction number, showed that the model exhibits both endemic and disease-free equilibrium points, and showed that backward bifurcation can occur. Furthermore, we documented the effects of asymptomatic infected individuals on the disease transmission. We validated the model using real data from Thailand and found that vaccination alone is insufficient to completely eradicate the disease. We also found that Thailand must monitor asymptomatic individuals through stringent testing to halt and subsequently eradicate the disease. Our study provides novel insights into the behavior and impact of the Omicron variant and suggests possible strategies to mitigate its spread.


Assuntos
COVID-19 , Conceitos Matemáticos , Humanos , Tailândia/epidemiologia , Modelos Biológicos , Simulação por Computador , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2
2.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36679848

RESUMO

It is a known fact that there are a particular set of people who are at higher risk of getting COVID-19 infection. Typically, these high-risk individuals are recommended to take more preventive measures. The use of non-pharmaceutical interventions (NPIs) and the vaccine are playing a major role in the dynamics of the transmission of COVID-19. We propose a COVID-19 model with high-risk and low-risk susceptible individuals and their respective intervention strategies. We find two equilibrium solutions and we investigate the basic reproduction number. We also carry out the stability analysis of the equilibria. Further, this model is extended by considering the vaccination of some non-vaccinated individuals in the high-risk population. Sensitivity analyses and numerical simulations are carried out. From the results, we are able to obtain disease-free and endemic equilibrium solutions by solving the system of equations in the model and show their global stabilities using the Lyapunov function technique. The results obtained from the sensitivity analysis shows that reducing the hospitals' imperfect efficacy can have a positive impact on the control of COVID-19. Finally, simulations of the extended model demonstrate that vaccination could adequately control or eliminate COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...