Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Parasitol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190277

RESUMO

PURPOSE: The aim of the present study is to assess the molluscicidal, larvicidal and genotoxicological activities of papain and how it can affect the host-parasite interactions. METHODS: Toxicity of papain on snails by making series of concentrations to calculate LC50, and then study its larvicide effect on the free larval stages of S. mansoni and infection rate of snails. RESULTS: Papain has a molluscicidal activity on adult snails of Biomphalaria alexandrina with a lethal concentration LC50 equals to 43.1 mg/L. In addition, it has activity on miracidia with half Lethal time (LT50) of 16.11 min., and on cercariae with 12.1 min. compared to control ones. The sub lethal concentration LC10 and LC25 (6.9 or 24.1 mg/L, respectively) decreased the survival rate of snails at the first cercarial shedding, the rate of infection, the average total number of cercariae per snail, the shedding period and the life span of snails, while the prepatent period was significantly increased than the control ones. The morphological alterations in cercariae after exposure to papain were occurred where the cercariae lacked motility and some had a dark tail with complete detachment of head and tail. Compared to the control group, the levels of cytochrome oxidase subunit I (COI) and (ND1) genes significantly decreased in snails after exposure to papain. CONCLUSIONS: Papain could be used as a potential molluscicide for elimination of schistosomiasis and decrease its transmission and deterioration of host-parasite interaction.

2.
Environ Sci Pollut Res Int ; 31(38): 50905-50915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106017

RESUMO

Trace metal pollution of soils is a widespread consequence of anthropogenic activity. Land slugs can be used as bio-indicators of the metals' pollution in the soil, so the present study aimed to determine the metal in the soil and Laevicaulis stuhlmanni land slug tissues by studying its effects on different physiological parameters. Slugs and soil samples were collected from fields in Abu-Rawash, Giza, Egypt. Slugs were identified, and the metals were determined in slug tissues and soil samples. On the other hand, slugs were reared in the laboratory and the new generation was fed on lettuce dipped in 0.027 µg/ml lead (Pb) for 10 days. The results revealed that the soil and slug tissues contained copper, manganese, lead, and zinc; the lead metal bioaccumulation factor was the highest. Also, the results showed that the hemocytes' count, testosterone, and estradiol hormones were significantly decreased. At the same time, the phagocytic index was increased considerably, and some morphological alterations in the granulocytes and hyalinocytes were observed after treatment with 0.027 µg/ml lead compared to untreated slugs. On the other hand, all the oxidative stress parameters were significantly increased in the treated slugs compared with the control. Concerning the histopathological studies, lead caused a rupture, vacuolation, or degeneration in the digestive cells of treated slugs. Finally, it can be concluded that the land slugs were sensitive to lead which was reflected by endocrine disruption, immunotoxicity, and increased oxidative stress parameters with histopathological damages. Hence, Laevicaulis stuhlmanni can be used as a metal accumulation bio-indicator to reflect the metal pollution in the soil.


Assuntos
Gastrópodes , Chumbo , Poluentes do Solo , Animais , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Gastrópodes/efeitos dos fármacos , Monitoramento Ambiental/métodos , Egito , Solo/química
3.
Front Plant Sci ; 15: 1403753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779072

RESUMO

In the realm of nanotechnology, the use of algae to produce nanoparticles is an environmentally friendly, sustainable, and economically viable strategy. In the present study, the brown macroalgae Sargassum subrepandum was utilized to effectively produce silver nanoparticles (AgNPs). Through various characterization techniques, the AgNPs' structural integrity was confirmed. AgNPs exhibited significant antimicrobial activity against Pseudomonas aeruginosa and Fusarium equiseti. AgNPs showed cytotoxic effects on the MCF-7 breast adenocarcinoma cell line with an IC50 of 12.5 µg/ml. Treatment with AgNPs resulted in a marked reduction in cell viability, alongside evident apoptotic and necrotic morphological changes in the cancer cells. Through molecular docking studies, a deeper understanding of the interaction between AgNPs and crucial proteins related to cancer has been achieved, AgNPs showed a promising molluscicidal action on Biomphalaria alexandrina snails, a Schistosoma mansoni intermediate host. The half-lethal dose (LC50) of AgNPs was determined to be 0.84 mg/L. The potential consequences of its administration include potential disruptions to the glycolysis profile, as well as potential impacts on the steroidal hormone's estrogen and testosterone and certain kidney function tests. This study highlights the diverse uses of algae-synthesized AgNPs, ranging from healthcare to environmental management, demonstrating their importance in advancing nano-biotechnological solutions.

4.
Pestic Biochem Physiol ; 201: 105855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685235

RESUMO

Biomphalaria spp. snails are freshwater gastropods that responsible for Schistosoma mansoni transmission. Schistosomiasis is a chronic illness that occurred in underdeveloped regions with poor sanitation. The aim of the present study is to evaluate the molluscicidal activity of benzylamine against B. alexandrina snails and it larvicidal effects on the free larval stages of S. mansoni. Results showed that benzylamine has molluscicidal activity against adult B. alexandrina snails after 24 h of exposure with median lethal concentration (LC50) 85.7 mg/L. The present results indicated the exposure of B. alexandrina snails to LC10 or LC25 of benzylamine resulted in significant decreases in the survival, fecundity (eggs/snail/week) and reproductive rates, acetylcholinesterase, albumin, protein, uric acid and creatinine concentrations, levels of Testosterone (T) and 17ß Estradiol (E), while alkaline phosphatase levels were significantly increased in comparison with control ones. The present results showed that the sub lethal concentration LC50 (85.7 mg/L) of benzylamine has miracidial and cercaricidal activities, where the Lethal Time (LT50) for miracidiae was 17.08 min while for cercariae was 30.6 min. Also, results showed that were decreased significantly after exposure to sub lethal concentrations compared with control. The present results showed that the expression level of NADH dehydrogenase subunit 1 (ND1) genes and cytochrome oxidase subunit I (COI) in B. alexandrina snails exposed to LC10 or LC25 concentrations benzylamine were significantly decreased compared to the control groups. Therefore, benzylamine could be used as effective molluscicide to control schistosomiasis.


Assuntos
Biomphalaria , Larva , Schistosoma mansoni , Animais , Biomphalaria/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacos , Larva/efeitos dos fármacos , Moluscocidas/farmacologia
5.
Acta Parasitol ; 69(1): 648-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302641

RESUMO

BACKGROUND: Trematode infections of the genus Schistosoma can induce physiological and behavioral changes in intermediate snail hosts. This is because the parasite consumes essential resources necessary for the host's survival, prompting hosts to adapt their behavior to maintain some level of fitness before parasite-induced mortality occurs. METHODS: In this study, the reproductive and biochemical parameters of Biomphalaria alexandrina and Bulinus truncatus were examined during the cercareal shedding stage of infection with Schistosoma mansoni and Schistosoma haematobium, respectively, compared with controls. RESULTS: The study revealed an infection rate of 34.7% for S. mansoni and 30.4% for S. haematobium. In B. alexandrina infected with S. mansoni, a survival rate of 65.2% was recorded, along with a mean prepatent period of 30.3 ± 1.41 days, a mean shedding duration of 14.2 ± 0.16 days, and a mean lifespan of 44.1 ± 0.24 days. Meanwhile, in B. truncatus infected with S. haematobium, a survival rate of 56.4% was observed, with a mean prepatent period of 44.3 ± 1.41 days, a mean shedding duration of 22.6 ± 2.7 days, and a mean lifespan of 66.9 ± 1.6 days. Feeding increased in both infected species of snails, while the net reproductive rate (Ro) of the infected snails decreased. Total antioxidant (TAO) and lipid peroxidation activity increased in the two infected snail species during shedding, while Glutathione-S-transferase levels decreased. Lipid peroxidase activity and nitrogen oxide levels significantly decreased in infected B. alexandrina and increased in infected Bulinus. Steroid hormone levels were elevated in infected Biomphalaria, whereas they were reduced in infected Bulinus. Comet assay parameters showed an increase in the two infected genera after infection compared to control snails, indicating genotoxic damage and histopathological damage was observed. CONCLUSIONS: These findings demonstrate that infection with larva species diverse biochemical, hormonal, genotoxic, and histopathological changes in the tissues responsible for fecundity and reproduction in B. alexandrina and B. truncates comparing with controls.


Assuntos
Biomphalaria , Bulinus , Interações Hospedeiro-Parasita , Schistosoma mansoni , Animais , Biomphalaria/parasitologia , Schistosoma mansoni/fisiologia , Bulinus/parasitologia , Schistosoma haematobium/genética , Schistosoma haematobium/fisiologia , Comportamento Alimentar , Cercárias/fisiologia , Reprodução
6.
Pestic Biochem Physiol ; 198: 105716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225073

RESUMO

Land snails are the most harmful pests in agricultural fields. Eobania vermiculata is a widespread snail species that causes massive damage to all agricultural crops. Thus, the molluscicidal activity of calcium borate nanoparticles (CB-NPs) against Eobania vermiculata was evaluated and compared with metaldehyde (Gastrotox® E 5% G). The amorphous phase of CB-NPs was obtained after thermal treatment at a low temperature (500 °C) which conformed by X-ray diffraction (XRD) analysis. CB-NPs are composed of aggregated nano-sheets with an average thickness of 54 nm which enhanced their molluscicidal activity. These nano-sheets displayed meso-porous network architecture with pore diameters of 13.65 nm, and a 9.46 m2/g specific surface area. CB-NPs and metaldehyde (Gastrotox® E 5% G) exhibited molluscicidal effects on Eobania vermiculata snails with median lethal concentrations LC50 of 175.3 and 60.5 mg/l, respectively, after 72 h of exposure. The results also showed significant reductions of Eobania vermiculata snails hemocytes' mean total number, the levels of Testosterone (T) and Estrogen (E), alkaline phosphatase, acid phosphatase, albumin, and protein concentrations, succinate dehydrogenase, glucose, triglycerides and phospholipids levels, while significant increases in the phagocytic index and mortality index, both transaminases (ALT and AST) and glycogen phosphorylase concentration were observed after the exposure to LC50 of CB-NPs or metaldehyde (Gastrotox® E 5% G) compared to the control group. Therefore, CB-NPs could be used as an alternative molluscicide for controlling Eobania vermiculata, but further studies are needed to assess their effects on non-target organisms.


Assuntos
Acetaldeído/análogos & derivados , Boratos , Moluscocidas , Caramujos , Animais , Compostos de Cálcio/metabolismo , Compostos de Cálcio/farmacologia , Moluscocidas/farmacologia , Flores
7.
Biol Trace Elem Res ; 202(5): 2327-2337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37648936

RESUMO

Because of their low ecological impact, plant molluscicides have garnered much attention. The work aimed to find out if Annona squamosa (AS) seed extract has a molluscicidal impact on Biomphalaria alexandrina snails and enhances this extract by adding CuO nanoparticles (NPs). Using a scanning electron microscope (SEM), transmission electron microscope (TEM), and PANalytical X'Pert PRO X-ray diffractometer (XRD), the presence of the green A. squamosa-based CuO NPs (AS-CuO NPs) was confirmed. After 24 h of exposure, the half-lethal concentration (LC50) of AS-CuO NPs was more toxic to mature B. alexandrina than the aqueous extract of AS seeds (LC50: 119.25 mg/L vs. 169.03 mg/L). The results show that snails exposed to sublethal doses of AS-CuO NPs at LC10 or LC25 (95.4 or 106.7 mg/L, respectively) had much higher glucose levels and alkaline phosphatase activity than those not exposed. Nevertheless, there was no discernible change in the protein content in general or glycogen phosphorylase production. Histological and immunohistochemical analysis showed that snails exposed to A. squamosa-derived CuO NPs LC10 had shrinking digestive tubules and degeneration as well as vacuolation of many digestive, secretory, ova, and sperm cells, with PCNA expressing positively in the hermaphrodite gland and digestive tubule cells. The toxic profile of green CuO NPs produced by A. squamosa may damage the biological activity of B. alexandrina snails; thus, this compound could be used as a molluscicidal base. Furthermore, B. alexandrina proved to be a useful biomarker of nanomaterial contamination.


Assuntos
Annona , Biomphalaria , Moluscocidas , Nanopartículas , Animais , Cobre/farmacologia , Sementes , Moluscocidas/toxicidade , Extratos Vegetais/farmacologia , Comportamento Alimentar , Óxidos
8.
Parasite Epidemiol Control ; 23: e00331, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38148891

RESUMO

Schistosomiasis is a tropical disease that widely neglected. Schistosoma mansoni reproduce asexually within the freshwater snail, Biomphlaria alexandrina. Sodium hypochlorite (NaOCl) is a widely used disinfectant, so its effect against gainst B. alexandrina snails was evaluated. The present results showed that NaOCl has a molluscicidal activity against adult B. alexandrina snails at LC50 1.25 ppm. Hemocytes displayed varied morphological forms after being exposed to the LC10 and LC25 concentrations of NaOCl in B. alexandrina snails, and the phagocytic index of B. alexandrina snail's hemocytes significantly increased. The phagocytic potency of exposed hemocytes to charcoal showed ruptured plasma membrane, engulfed particles, vacuolation in the cytoplasm and degeneration of nuclei. When B. alexandrina snails were treated with sublethal concentrations of NaOCl, transaminases (AST & ALT), alkaline and acid phosphatase activities were significantly increased. In contrast, the total protein, albumin concentrations, Testosterone (T) and 17ß Estradiol (E) showed a significant decrease (p ≤ 0.05) as compared to the control groups. The molecular docking interaction showed high efficiency for the ligand, NaOCl against the receptor binding sites of the acid phosphatase, alanine aminotransferase, estrogen and testosterone. The present results showed that NaOCl could be used as an effective molluscicide against B. alexandrina snails but more attention should be paid to investigate the side effects on the non-target organisms living in the freshwater environment.

9.
Environ Sci Pollut Res Int ; 30(48): 105967-105976, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37721672

RESUMO

Metal pollution has many dangerous environmental and human health consequences due to the bioaccumulation in the tissues. The present study aims to measure the bioaccumulation factor of the manganese (Mn) heavy metal in Biomphalaria alexandrina snails' tissues and water samples. The current results showed the concentration of Mn heavy metal in water (87.5 mg/l) and its bioaccumulation factor in Helisoma duryi tissue was higher than that in tissues of Physa acuta and B. alexandrina snails. Results showed that 87.5 mg/l Mn concentration had miracidicidal and cercaricidal activities. Also, this concentration decreased the mean total number of the hemocytes after exposure for 24 h or 48 h, while increasing both the mean mortality and phagocytic indices of the hemocytes of exposed snails. It caused alterations in the cytomorphology of the hemocytes of exposed snails after 24 or 48 h, where the granulocytes had irregular cell membranes and formed pseudopodia. Besides, levels of testosterone (T) and estradiol (E) were increased after exposure to 87.5 mg/l Mn metal compared to the control group. Also, it increased MDA (malonaldehyde) and TAC (total antioxidant capacity) contents, while decreasing SOD (superoxide dismutase). Besides, it caused significant histopathological damages in both hermaphrodite and digestive glands, represented in the degeneration of the gonadal, digestive, secretory cells, and the connective tissues. Therefore, B. alexandrina might be used as a sensitive bioindicator of pollution with Mn heavy metal to avoid ethics rules; besides, they are readily available and large in number.


Assuntos
Biomphalaria , Metais Pesados , Animais , Humanos , Manganês/metabolismo , Monitoramento Biológico , Água/metabolismo , Caramujos , Metais Pesados/metabolismo
10.
Pestic Biochem Physiol ; 195: 105559, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666595

RESUMO

The present investigation aimed to synthesize chitosan­gold nanocomposites (Ch-AuNPs) with gamma radiation, then to evaluate its toxic effect on the freshwater snails Biomphalaia alexandrina. Results showed that Ch-AuNPs is spherical shaped with average size 12 nm. It had a toxic effect against B. alexandrina snails with LC50 20.43 mg/l. Exposure of B. alexandrina snails to LC10 7.51 or LC25 13.63 mg/l of Ch-AuNPs, reduced the survival, reproductive and fecundity rates; total protein and albumin; both testosterone (T) and 17ß Estradiol (E) levels; SOD and CAT activities of exposed snails while increased the activities of transaminases (AST & ALT), uric acid, creatinine, TAC and MDA levels compared to the control group. Results were supported by histopathological and immunohistopathological alterations of the digestive and hermaphrodite glands. In conclusion B. alexandrina could be used as a model to screen the negative impact of nanomaterials. Also, Ch-AuNPs could be used as a molluscicidal agent.


Assuntos
Biomphalaria , Quitosana , Nanopartículas Metálicas , Nanocompostos , Animais , Quitosana/farmacologia , Ouro , Estresse Oxidativo
11.
Microorganisms ; 11(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764185

RESUMO

Bacterial-associated wound infections are an obstacle for individuals and the medical industry. Developing versatile, antibiotic-free therapies helps heal wounds more quickly and efficiently. In the current study, fungal metabolites were employed as a reducing agent in fabricating selenium nanoparticles (SeNPs) for improved antibacterial and wound healing properties. Utilizing UV-visible spectroscopy, dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), and electron microscopic examination, the properties of the synthesized nanoparticles were extensively evaluated. Myco-synthesized SeNPs demonstrated strong antibacterial activity against Staphylococcus aureus ATCC 6538 with a minimum inhibitory concentration of 0.3125 mg/mL, reducing cell number and shape distortion in scanning electron microscope (SEM) images. SeNPs' topical administration significantly reduced wound area and healing time, exhibiting the least bacterial load after six days compared to controls. After six and 11 days of treatment, SeNPs could decrease proinflammatory cytokines IL-6 and TNF-α production. The histopathological investigation showed a healed ulcer with moderate infiltration of inflammatory cells after exposing mice's skin to SeNPs for six and 11 days. The docking interaction indicated that SeNPs were highly efficient against the IL-6 and TNF-α binding receptors. These findings imply that myco-fabricated SeNPs might be used as topically applied antimicrobial agents for treating skin infections and wounds.

12.
Environ Sci Pollut Res Int ; 30(32): 78641-78652, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273057

RESUMO

Bulinus truncatus snail is one of the most medically important snails. The goal of this study was to evaluate the molluscicidal effect of saponin on these snails and study how it affects their biological functions. The present results showed that saponin had a molluscicidal activity against adult B. truncatus snails after 24h and 72h with LC50 (57.5 and 27.1 ppm, respectively) and had ovicidal acivity on the snails' embryos. By studying the effect of the sublethal concentrations (LC10 48.63 ppm or LC25 52.83 ppm) exposure on B. truncatus snails, they resulted in significant decreases in the survivorship, egg-laying, and the reproductive rate compared to untreated snails. Both concentrations caused morphological changes to the snails' hemocytes, where, after the exposure, granulocytes and hyalinocytes had irregular outer cell membrane and some cell formed pseudopodia. Granulocytes had large number of granules, vacuoles, while hyalinocytes' nucleus was shrunken. Also, these concentrations resulted in significant increases in sex hormone levels (17ß-estradiol and testosterone) in tissue homogenate of B. truncatus snails. It resulted in significant decrease in total antioxidant (TAO) activity, while, significantly increased lipid peroxidase (LPO) level, superoxide dismutase (SOD), nitrogen oxide (NO), and glutathione-S-transferase (GST) as compared to control group. Histopathological and genotoxicological damages occurred in snails' tissue after exposure to these concentrations. Conclusion, saponin has a molluscicidal effect on B. truncatus snails and might be used for the control of schistosomiasis haematobium. Besides, these snails could be used as invertebrate models to reflect the toxic effects of saponin in the aquatic ecosystem.


Assuntos
Moluscocidas , Saponinas , Animais , Bulinus , Saponinas/farmacologia , Ecossistema , Caramujos , Moluscocidas/toxicidade , Estresse Oxidativo
13.
J Antimicrob Chemother ; 78(8): 2000-2007, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367727

RESUMO

BACKGROUND: Due to the high prevalence of resistance to NNRTI-based ART since 2018, consolidated recommendations from the WHO have indicated dolutegravir as the preferred drug of choice for HIV treatment globally. There is a paucity of resistance outcome data from HIV-1 non-B subtypes circulating across West Africa. AIMS: We characterized the mutational profiles of persons living with HIV from a cross-sectional cohort in North-East Nigeria failing a dolutegravir-based ART regimen. METHODS: WGS of plasma samples collected from 61 HIV-1-infected participants following virological failure of dolutegravir-based ART were sequenced using the Illumina platform. Sequencing was successfully completed for samples from 55 participants. Following quality control, 33 full genomes were analysed from participants with a median age of 40 years and median time on ART of 9 years. HIV-1 subtyping was performed using SNAPPy. RESULTS: Most participants had mutational profiles reflective of exposure to previous first- and second-line ART regimens comprised NRTIs and NNRTIs. More than half of participants had one or more drug resistance-associated mutations (DRMs) affecting susceptibility to NRTIs (17/33; 52%) and NNRTIs (24/33; 73%). Almost a quarter of participants (8/33; 24.4%) had one or more DRMs affecting tenofovir susceptibility. Only one participant, infected with HIV-1 subtype G, had evidence of DRMs affecting dolutegravir susceptibility-this was characterized by the T66A, G118R, E138K and R263K mutations. CONCLUSIONS: This study found a low prevalence of resistance to dolutegravir; the data are therefore supportive of the continual rollout of dolutegravir as the primary first-line regimen for ART-naive participants and the preferred switch to second-line ART across the region. However, population-level, longer-term data collection on dolutegravir outcomes are required to further guide implementation and policy action across the region.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Humanos , Adulto , Estudos Transversais , Infecções por HIV/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Oxazinas/uso terapêutico , Piridonas/uso terapêutico , Inibidores de Integrase de HIV/uso terapêutico , Inibidores de Integrase de HIV/farmacologia , Mutação , Farmacorresistência Viral/genética , Integrases/genética
14.
Exp Parasitol ; 248: 108502, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36914064

RESUMO

Schistosomiasis is a snail-born, neglected tropical disease (NTD) caused by blood flukes (trematode worms) of the genusSchistosoma. It is the second most socioeconomically devastating parasitic disease after malaria. Urogenital schistosomiasis is caused by Schistosoma haematobium which is transmitted by snail intermediate host of the genus Bulinus. This genus is a model system for the study of polyploidy in animals. This study aims to investigate ploidy levels existing among the Bulinus species and their compatibility with S. haematobium. The specimens were collected from two governorates in Egypt. Chromosomal preparation was made from gonad tissue (ovotestis). This study found two ploidy levels (tetraploid, n = 36 and hexaploid, n = 54) of B. truncatus/tropicus complex in Egypt. Tetraploid B. truncatus was found in El-Beheira governorate while-unexpectedly and for the first time in Egypt, the hexaploid population was found in Giza governorate. This identification focused on shell morphology, chromosomal count, and spermatozoa of each species. Afterward, all species were exposed to S. haematobium miracidia where B. hexaploidus snails were the only refractory species. The histopathological study showed early destruction and abnormal development of S. haematobium in B. hexaploidus tissues. In addition, the hematological investigation showed increasing in the total hemocyte count, the formation of vacuoles, several pseudopodia, and more dense granules in the hemocytes of infected B. hexaploidus snails. In conclusion, there were two types of snails one was refractory and the other was susceptible.


Assuntos
Bulinus , Esquistossomose Urinária , Masculino , Animais , Bulinus/genética , Bulinus/parasitologia , Schistosoma haematobium/genética , Tetraploidia , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/parasitologia , Vetores de Doenças
15.
Microorganisms ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985384

RESUMO

Daphnia magna and freshwater snails are used as delicate bioindicators of contaminated aquatic habitats. Due to their distinctive characteristics, selenium oxide nanoparticles (SeONPs) have received interest regarding their possible implications on aquatic environments. The current study attempted to investigate the probable mechanisms of fungal-mediated selenium nanoparticles' ecotoxicological effects on freshwater Biomphalaria alexandrina snails and Daphnia magna. SeONPs revealed a toxicological impact on D. magna, with a half-lethal concentration (LC50) of 1.62 mg/L after 24 h and 1.08 mg/L after 48 h. Survival, fecundity, and reproductive rate were decreased in B. alexandrina snails exposed to SeONPs. Furthermore, the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were markedly elevated, while albumin and total protein levels decreased. Histopathological damage in the hermaphrodite and digestive glands was detected by light, electron microscopy, and immunohistochemistry studies. The molecular docking study revealed interactions of selenium oxide with the ALT and AST. In conclusion, B. alexandrina snails and D. magna could be employed as bioindicators of selenium nanomaterial pollution in aquatic ecosystems. This study emphasizes the possible ecological effects of releasing SeONPs into aquatic habitats, which could serve as motivation for regulatory organizations to monitor and control the use and disposal of SeONPs in industry.

16.
Pestic Biochem Physiol ; 191: 105357, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963932

RESUMO

Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.


Assuntos
Biomphalaria , Moluscocidas , Saponinas , Animais , Biomphalaria/metabolismo , Schistosoma mansoni , Larva , Saponinas/toxicidade , Saponinas/metabolismo , Caramujos , Moluscocidas/toxicidade
17.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771561

RESUMO

The potential of plant-based natural compounds in the creation of new molluscicidal and antimicrobial medications has gained attention in recent years. The current study compared the metabolic profiles, antibacterial, and molluscicidal properties of the medicinal plants Calotropis procera (C. procera) and Atriplex halimus (A. halimus). In both plants, 118 metabolites were identified using gas chromatography-mass spectrometry. Palmitic acid, stigmasterol, and campesterol were the most prevalent constituents. C. procera extract showed stronger antibacterial activity than A. halimus against Escherichia coli and Proteus mirabilis. Both extracts exhibited molluscicidal activity against Biomphalaria alexandrina, with LC50 values of C. procera (135 mg/L) and A. halimus (223.8 mg/L). Survival rates of snails exposed to sub-lethal concentrations (LC25) of C. procera and A. halimus extracts were 5% and 20%, respectively. The hatchability of snail eggs exposed to both extracts has been dramatically reduced. Both extracts significantly decreased the levels of alkaline phosphatase, acid phosphatase, total protein, and albumin in snails, as well as causing DNA damage and resulting in numerous hermaphrodite and digestive gland damages and distortions. Molecular docking showed palmitic acid binding with acid, alkaline, and alanine aminotransferases in treated digestive gland snails. In conclusion, C. procera and A. halimus have antibacterial and molluscicidal properties.

18.
Int Immunopharmacol ; 113(Pt A): 109415, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461604

RESUMO

Schistosomiasis remains one of the world's leading health concerns, affecting millions. The granulomatous reaction is the most significant immunopathological change associated with Schistosoma mansoni infection, resulting in significant mortality. Recent progress has been made in the search for new natural compounds to reduce schistosomiasis and its immunopathology. Walnuts contain the phenolic compound Juglone (5-hydroxy-1,4-naphthoquinone), which has antiparasitic, anti-inflammatory, immunoregulatory, and antioxidant properties. There were three groups of infected mice: untreated (IU), Juglone-treated (JUG T), and praziquantel-treated (PZ). In mice treated at 8 mg Juglone /kg body weight, a reduction of 63.1 % and 52.1 % were observed in the number of male and female worms, respectively. In addition, the number of eggs/g tissue was reduced by 65.7 % in the liver, 58.58 % in the intestine, and 62.31 % in the liver and intestine combined. In addition, Juglone decreased hepatic granuloma size by 55.1 % and collagen fiber deposition by 23.4 % compared to PZQ (41.18 % and 11.2 %, respectively). Interestingly, the JUG T group had significantly lower levels of IL-4, IL-13, IL-37, TNF-α, TGF-ß, and IFN-γ than PZ mice (p < 0.05). While IL-10 and IL-17 levels rose (p < 0.01), Juglone could restore hepatic ALT, AST, GGT, and LDH activities following infection. In addition, it increased catalase, SOD, GSH, and GST while decreasing NO and LPO in comparison to the infected group. Moreover, anti-SWAP, SEA, and CAP IgG levels increased significantly. IgE levels did not change significantly, however. Juglone could be used as an antifibrotic, immunomodulatory, and schistosomicidal agent; thus, it could be used in place of PZQ.


Assuntos
Naftoquinonas , Esquistossomose mansoni , Esquistossomicidas , Feminino , Masculino , Camundongos , Animais , Esquistossomose mansoni/tratamento farmacológico , Naftoquinonas/uso terapêutico , Fígado
19.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124858

RESUMO

Eremina desertorum snail mucin antioxidant and anti-inflammatory effects were investigated against carbon tetrachloride (CCl4)-intestinal inflammation and testes damage. Male albino mice were intraperitoneally injected with 0.5 ml/kg b.wt of 40% CCl4, twice a week for 8 weeks. The treated groups were treated orally with mucin (after 8 weeks of CCl4 intoxication, twice a week for 4 weeks). CCl4 caused significant increases in C-reactive protein, lipid peroxidation, interleukin-2 levels and caspase-3, while decreasing the total proteins levels, activities of catalase, superoxide dismutase, and glutathione reductase contents, testosterone and 17ß estradiol levels compared with the control mice. The improvements of these parameters occurred after treatment with E. desertorum mucin, where all the biochemical measurements tended to restore to the normal values. Histopathologically, CCl4 caused ulceration in the columnar mucin secreting cells that lined the ileal mucosa, partial loss of goblet cells, abnormal villous/crypt ratio, and submucosal infiltrate of the inflammatory cells. Also, sections of testis showed alterations in the developmental spermatogenic arrangement of the same seminiferous tubules, with no spermatozoa in the center. Improvements in these architectures occurred after administration of mucin, where sections showed almost normal histological structure. In conclusion, E. desertorum mucin could be used as a supplementary material as it has antioxidant and anti-inflammatory effects; besides it has low cost.


Assuntos
Antioxidantes , Testículo , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Testículo/metabolismo , Mucinas/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos , Extratos Vegetais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Caramujos/metabolismo
20.
Pestic Biochem Physiol ; 186: 105154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973759

RESUMO

Organophosphorus pesticides like Chlorpyrifos 48%EC were widely used to control agricultural pests. The present study aimed to evaluate the toxic effects of Chlorpyrifos 48%EC on B. alexandrina snails, the intermediate host of Schistosoma mansoni. After exposure of snails to serial concentrations to determine the LC50, thirty snails for each sublethal concentration (LC10 2.1 and LC25 5.6 mg/l) in each group were exposed for 24 h followed by another 24 h for recovery. After recovery random samples were collected from hemolymph and tissue to measure the impacts on Phagocytic index, histological, biochemical, and molecular parameters. The current results showed a toxic effect of Chlorpyrifos 48%EC on adult B. alexandrina snails after 24 h of exposure at LC50 9.6 mg/l. After exposure to the sub-lethal concentrations of this pesticide, it decreased the total number of hemocytes and the percentage of small cells, while increased the percentage of hyalinocytes. The granulocyte percentage was increased after exposure to LC10, while after LC25, it was decreased compared to the control group. Also, the light microscopical examination showed that some granulocytes have plenty of granules, vacuoles and filopodia. Some hyalinocytes were contained shrinked nuclei, incomplete cell division and forming pseudopodia. Besides, the phagocytic index of hemocytes was significantly increased than control in all treated groups. Also, these sub-lethal concentrations increased MDA and SOD activities, while, tissue NO, GST and TAC contents were significantly decreased after exposure. Levels of Testosterone (T) and Estradiol (E) were increased significantly after exposure compared with control group. The present results showed that the concentration of DNA and RNA was highly decreased after exposure to LC10, 25 than the control group. Therefore, B. alexandrina snails could be used as a bio monitor of the chemical pollution. Besides, this pesticide could reduce the transmission of schistosomiasis as it altered the biological system of these snails.


Assuntos
Biomphalaria , Clorpirifos , Moluscocidas , Praguicidas , Animais , Biomphalaria/genética , Clorpirifos/toxicidade , Hemócitos , Moluscocidas/toxicidade , Compostos Organofosforados/farmacologia , Praguicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA