Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930328

RESUMO

This research is aimed at studying the properties of polymer anticorrosion coatings based on ED-20 resin widely used in practice and industrial wastes. In this work, three basic types of nanoscale nanofillers were chosen: dispersed particles-microsilica, microspheres obtained at Kazakh enterprises, and carbon nanotubes. Physicochemical research methods were used in the research: a laser analyzer for studying the dispersibility of industrial waste and spectrometric research methods. The properties of materials were investigated by standardized methods. The obtained results show that the introduction of microsilica and microspheres obtained at Kazakhstani enterprises, used as additives, improves both the physical and mechanical properties of epoxy composites compared to the standard (control) material. The results of experiments have shown that the optimal content of additives of microsilica and microspheres provides an improvement in the physical and mechanical properties of epoxy composites in comparison with the standard (control) material. Studies have shown that the introduction of microspheres into ED-20 polymer increases impact toughness. The introduction of microsilica into the matrix contributes to the increase of elastic modulus. Experimental studies of optical properties of samples of carbon composite polymer films based on polystyrene (PS) with additives of carbon nanotubes C60 and C70 and multilayer carbon nanotubes were also carried out. The experimental results obtained for the optical properties of polymer composites based on basic polymers from solid waste and carbon nanotubes showed that the optical properties of polymer composites undergo noticeable changes.

2.
Vet World ; 15(9): 2285-2292, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36341071

RESUMO

Background and Aim: Trichinellosis remains a dangerous disease for humans and animals, which can lead to a lethal outcome. The study of specific body reactions in response to invasion by different types of Trichinella can help in the early diagnosis of the disease. This study aimed to investigate the hematological, biochemical, and serological characteristics of rabbits experimentally infected with trichinellosis, as well as the possibility of using changes in these parameters at various disease stages for early hematological, biochemical, and serological diagnosis of trichinellosis. Materials and Methods: Three groups of rabbits were orally infected with Trichinella nativa and Trichinella spiralis derived from encysted T. spirtalis larvae in pork muscle samples. The first and second groups were infected with T. nativa and T. spiralis, respectively, while the third group served as control by receiving a physiological solution. An ADVIA 2120i automatic hematology analyzer with a blood smear staining module was used to determine the hematological parameters of rabbits. Antigens were used in an enzyme-linked immunosorbent assay (ELISA) to detect antibodies in the sera of infected rabbits that were supernatants containing excretory-secretory antigens (ES-Ag) and somatic antigen (S-Ag). Results: The detection of biochemical responses to the invasion of T. nativa and T. spiralis isolates was detected and hematological parameters were featured in two cases. Trichinella nativa increased the number of erythrocytes, neutrophils, eosinophils, monocytes, basophils, and thrombocytes on day 7 in rabbits. Creatine kinase (CK) is regarded as the most important indicator for the early detection of parasite invasion. Blood biochemistry showed no active response to T. spiralis infection. However, counts of erythrocytes, neutrophils, lymphocytes, and CK rose significantly. In both color indicators, the number of thrombocytes decreased. Enzyme-linked immunosorbent assay with ES-Ag and S-Ag of these isolates demonstrated the ability to detect antibodies as early as 7 days after infection, with a significant increase in the marker up to 70 days. Conclusion: On the 7th day after infection, blood tests of infected animals revealed CK-N-acetyl-cysteine (18.2%) and neutrophils (43%) when infected with T. nativa and neutrophils (26.7%) and lymphocytes (20%) when infected with T. spiralis. These indicators may serve as specific parameters for the early detection of Trichinella spp. invasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA