Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 25(2): 349-355, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30871649

RESUMO

A procedure to analyze the elemental concentration distribution inside solute clusters after detection of clusters from atom probe tomography data set was proposed. We developed a code which can directly illustrate an average concentration profile inside a cluster even in the case of including various sizes of ellipsoidal clusters. The profile can be with respect to absolute distance and includes errors in each data point. The reliability of the developed code was verified by analyzing an artificial cluster model which has inhomogeneous elemental distribution. It was found that the precise estimation of cluster centroids is important and that the preferable conditions for targeting clusters are a detection efficiency of over 20%, over 30 atoms in a cluster on average, and over 100 atoms for each concentration data point.

2.
Ultramicroscopy ; 132: 31-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23234834

RESUMO

It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys.

3.
Micron ; 40(1): 66-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18313311

RESUMO

High-resolution Rutherford backscattering spectrometry (HRBS) in combination with grazing angle argon sputtering was carried out to characterize the interface of aluminum-nickel (Al-Ni) alloy and amorphous-silicon films in a thin film transistor (TFT) for liquid crystal display (LCD). After thinning the top Al-Ni layer by a 1-keV Ar sputtering, the sensitivity of the interface oxygen was improved to be twice higher than that before sputtering. The results revealed that the oxygen at the interface relates to the contact characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...