Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108267, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026182

RESUMO

Our knowledge of the regulatory mechanisms that govern the replication of the rubella virus (RV) in human cells is limited. To gain insight into the host-pathogen interaction, we conducted a loss-of-function screening using the CRISPR-Cas9 system in the human placenta-derived JAR cells. We identified sphingomyelin synthase 1 (SGMS1 or SMS1) as a susceptibility factor for RV infection. Genetic knockout of SGMS1 rendered JAR cells resistant to infection by RV. The re-introduction of SGMS1 restored cellular susceptibility to RV infection. The restricted step of RV infection was post-endocytosis processes associated with the endosomal acidification. In the late phase of the RV replication cycle, the maintenance of viral persistence was disrupted, partly due to the attenuated viral gene expression. Our results shed light on the unique regulation of RV replication by a host factor during the early and late phases of viral life cycle.

2.
Chem Pharm Bull (Tokyo) ; 67(3): 210-223, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429430

RESUMO

The tumor microenvironment is considered as one of the important targets for anticancer drug discovery. In particular, nutrient deficiency may be observed in tumor microenvironment; biakamides A-D (1-4) isolated from marine sponge Petrosaspongia sp. as growth inhibitors against cancer cells adapted to glucose-deprived conditions have potential as new drugs and tools for elucidating adaptation mechanisms to these conditions. In this paper, we investigated structure-activity relationship (SAR) of biakamide to create easily accessible analog and gain insights about participation of the substructures to growth-inhibitory activity toward development of anticancer drug. This work revealed that 14,15-dinor-biakamide C (5), which is easily accessible, has similar activity to natural biakamide C (3). In addition, detailed SAR study showed the terminal acyl chain is important for interacting with target molecule and amide part including thiazole ring has acceptability to convert structures without losing activity.


Assuntos
Antineoplásicos/química , Policetídeos/química , Poríferos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Policetídeos/síntese química , Policetídeos/farmacologia , Poríferos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...