Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212926

RESUMO

Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies.IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses.


Assuntos
Modelos Animais de Doenças , Epitélio/patologia , Infecções por Orthomyxoviridae/patologia , Sistema Respiratório/patologia , Animais , Anticorpos Antivirais/sangue , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Células Madin Darby de Rim Canino , Mesocricetus/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Sistema Respiratório/virologia
2.
Vaccine ; 31(52): 6239-46, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24144478

RESUMO

Influenza virus and human parainfluenza virus (HPIV) are major etiologic agents of acute respiratory illness in young children. Inactivated and live attenuated influenza vaccines are approved in several countries, yet no vaccine is licensed for HPIV. We previously showed that a replication-incompetent PB2-knockout (PB2-KO) virus that possesses a reporter gene in the coding region of the PB2 segment can serve as a platform for a bivalent vaccine. To develop a bivalent vaccine against influenza and parainfluenza virus, here, we generated a PB2-KO virus possessing the hemagglutinin-neuraminidase (HN) glycoprotein of HPIV type 3 (HPIV3), a major surface antigen of HPIV, in its PB2 segment. We confirmed that this virus replicated only in PB2-expressing cells and expressed HN. We then examined the efficacy of this virus as a bivalent vaccine in a hamster model. High levels of virus-specific IgG antibodies in sera and IgA, IgG, and IgM antibodies in bronchoalveolar lavage fluids against both influenza virus and HPIV3 were detected from hamsters immunized with this virus. The neutralizing capability of these serum antibodies was also confirmed. Moreover, the immunized hamsters were completely protected from virus challenge with influenza virus or HPIV3. These results indicate that PB2-KO virus expressing the HN of HPIV3 has the potential to be a novel bivalent vaccine against influenza and human parainfluenza viruses.


Assuntos
Proteína HN/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Vacinas contra Parainfluenza/imunologia , Vírus da Parainfluenza 3 Humana/imunologia , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Líquido da Lavagem Broncoalveolar/imunologia , Cricetinae , Feminino , Proteína HN/genética , Imunoglobulina A/análise , Imunoglobulina G/análise , Imunoglobulina G/sangue , Imunoglobulina M/análise , Imunoglobulina M/sangue , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Mesocricetus , Orthomyxoviridae/genética , Vacinas contra Parainfluenza/administração & dosagem , Vacinas contra Parainfluenza/genética , Vírus da Parainfluenza 3 Humana/genética , Soro/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...