Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986133

RESUMO

Citrus nobiletin (NOB) and tangeretin (TAN) show protective effects against disease-related bone destruction. We achieved demethylation of NOB and TAN into 4'-demethylnobiletin (4'-DN) and 4'-demethyltangeretin (4'-DT) using enzyme-manufacturing methods. In this study, we examined the effects of 4'-DN and 4'-DT on in vitro osteoclast differentiation, and on in vivo osteoporotic bone loss in ovariectomized (OVX) mice. 4'-DN and 4'-DT clearly suppressed the osteoclast differentiation induced by interleukin IL-1 or RANKL treatment. 4'-DN and 4'-DT treatments resulted in higher inhibitory activity in osteoclasts in comparison to NOB or TAN treatments. RANKL induced the increased expression of its marker genes and the degradation of IκBα in osteoclasts, while these were perfectly attenuated by the treatment with 4'-MIX: a mixture of 4'-DN and 4'-DT. In an in silico docking analysis, 4'-DN and 4'-DT directly bound to the ATP-binding pocket of IKKß for functional inhibition. Finally, the intraperitoneal administration of 4'-MIX significantly protected against bone loss in OVX mice. In conclusion, 4'-DN, 4'-DT and 4'-MIX inhibited the differentiation and function of bone-resorbing osteoclasts via suppression of the NF-κB pathway. Novel 4'-DN, 4'-DT and 4'-MIX are candidates for maintaining bone health, which may be applied in the prevention of metabolic bone diseases, such as osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Feminino , Humanos , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , NF-kappa B/genética , NF-kappa B/metabolismo , Estrogênios/farmacologia , Diferenciação Celular , Ligante RANK/metabolismo , Ovariectomia
2.
Sci Rep ; 11(1): 13353, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172796

RESUMO

Periodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-µCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


Assuntos
Perda do Osso Alveolar/induzido quimicamente , Parede Celular/metabolismo , Bactérias Gram-Positivas/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Osteoblastos/efeitos dos fármacos , Prostaglandinas E/metabolismo , Ácidos Teicoicos/farmacologia , Perda do Osso Alveolar/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Periodontite/induzido quimicamente , Periodontite/metabolismo , Células RAW 264.7
3.
Nutrients ; 12(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660008

RESUMO

It is well known that physical inactivity during space flight or prolonged bed rest causes rapid bone loss. Soy isoflavones (ISOs) and resveratrol (RES) have been reported to be useful to maintain a positive balance for bone turnover. Therefore, we examined the combined effects of ISO and RES on bone loss that was induced by hindlimb-unloading in mice. Female eight-week-old ddY mice were divided into the following six groups (n = 6-8 each): normally housed mice, loading mice, hindlimb-unloading (UL) mice fed a control diet, UL mice fed a 0.16% ISO conjugates, UL mice fed a 0.15% RES diet, and UL mice fed a 0.16% ISO and 0.15% RES diet. After three weeks, femoral bone mineral density was markedly decreased in unloading mice. The combination of ISO and RES prevented bone loss and especially maintained the trabecular bone mineral density more effectively compared with cortical bones. ISO and/or RES inhibited the increase in the RANKL/OPG expression ratio in bone marrow cells in UL mice. These results suggest that the combination of ISO and RES had a preventive effect against bone loss induced by hindlimb-unloading in mice. These osteoprotective effects of ISO and RES may result from the inhibition of bone resorption.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Densidade Óssea/efeitos dos fármacos , Elevação dos Membros Posteriores , Isoflavonas/farmacologia , Resveratrol/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Células da Medula Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Calcificação Fisiológica , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Fêmur/anatomia & histologia , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Expressão Gênica/efeitos dos fármacos , Membro Posterior/fisiologia , Isoflavonas/administração & dosagem , Isoflavonas/uso terapêutico , Camundongos , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , Distribuição Aleatória , Resveratrol/administração & dosagem , Albumina Sérica , Glycine max , Tíbia , Microtomografia por Raio-X
4.
Sci Rep ; 9(1): 6614, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036903

RESUMO

Spaceflight is known to induce severe systemic bone loss and muscle atrophy of astronauts due to the circumstances of microgravity. We examined the influence of artificially produced 2G hypergravity on mice for bone and muscle mass with newly developed centrifuge device. We also analyzed the effects of microgravity (mostly 0G) and artificial produced 1G in ISS (international space station) on mouse bone mass. Experiment on the ground, the bone mass of humerus, femur and tibia was measured using micro-computed tomography (µCT), and the all bone mass was significantly increased in 2G compared with 1G control. In tibial bone, the mRNA expression of bone formation related genes such as Osx and Bmp2 was elevated. The volume of triceps surae muscle was also increased in 2G compared with 1G control, and the mRNA expression of myogenic factors such as Myod and Myh1 was elevated by 2G. On the other hand, microgravity in ISS significantly induced the loss of bone mass on humerus and tibia, compared with artificial 1G induced by centrifugation. Here, we firstly report that bone and muscle mass are regulated by the gravity with loaded force in both of positive and negative on the ground and in the space.


Assuntos
Osso Esponjoso/fisiologia , Músculo Esquelético/fisiologia , Absorciometria de Fóton , Animais , Peso Corporal/fisiologia , Proteína Morfogenética Óssea 2/metabolismo , Osso Esponjoso/metabolismo , Ingestão de Alimentos/fisiologia , Fêmur/metabolismo , Fêmur/fisiologia , Úmero/metabolismo , Úmero/fisiologia , Hipergravidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Fator de Transcrição Sp7/metabolismo , Tíbia/metabolismo , Tíbia/fisiologia , Microtomografia por Raio-X
5.
Nutrients ; 11(2)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744180

RESUMO

Beta-cryptoxanthin (ß-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that ß-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E2 production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of ß-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by ß-cry. In osteoblasts, ß-cry inhibited PGE2 production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, ß-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) ß, and adding ATP canceled this IKKß inhibition. Molecular docking simulation further suggested that ß-cry binds to the ATP-binding pocket of IKKß. In Raw264.7 cells, ß-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of ß-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.


Assuntos
beta-Criptoxantina/farmacologia , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Osteoclastos/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Animais , Masculino , Camundongos , Osteoclastos/citologia , Ligante RANK/metabolismo , Células RAW 264.7
6.
Pharmaceuticals (Basel) ; 11(1)2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361674

RESUMO

Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.

7.
Arch Oral Biol ; 85: 98-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29035723

RESUMO

OBJECTIVE: Periodontitis is characterized by local inflammation leading to tooth loss and severe destruction of alveolar bone. Raloxifene is a selective estrogen receptor modulator (SERM) that halts estrogen deficiency-induced systemic bone loss in postmenopausal osteoporosis without the side effects of cancer in breast and uterus. In this study, we examined the effects of raloxifene on alveolar bone mass in a mouse model with estrogen deficiency-induced periodontitis. METHODS: Periodontitis was induced by the injection of lipopolysaccharide (LPS) into the lower gingiva in ovariectomized (OVX) mice, and the alveolar bone and femur bone mineral density (BMD) were analyzed by dual-energy X-ray absorptiometry. To explore the direct osteoclast inhibitory effect of raloxifene, a co-culture system for osteoclast formation and organ culture of alveolar bone was established. RESULTS: When OVX mice were treated with raloxifene, the bone loss in both alveolar bone and femur were abrogated. Interleukin 1 and/or LPS stimulated the osteoclast formation and bone-resorbing activity; however, raloxifene did not show any inhibitory effect on the osteoclast formation or function. In vivo local injection of raloxifene also did not prevent bone resorption in a mouse model of periodontitis. However, the systemic treatment of raloxifene using a mini-osmotic pump did prevent the loss of BMD of alveolar bone induced by LPS. CONCLUSION: These results suggest that the SERM raloxifene systemically maintain alveolar bone mass in a mouse model of periodontitis with osteoporosis. Increasing the alveolar bone mass by SERMs treatment in patients with postmenopausal osteoporosis may be a useful approach to preventing the destruction of alveolar bone in late-onset periodontitis.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Densidade Óssea/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Cloridrato de Raloxifeno/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos
8.
FEBS Open Bio ; 7(12): 1972-1981, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226083

RESUMO

(-)-Epigallocatechin-3-O-gallate (EGCG), present in green tea, exhibits antioxidant and antiallergy effects. EGCG3″Me, a 3-O-methylated derivative of EGCG, has been reported to show similar biological functions; the inhibitory activity of EGCG3″Me in a mouse allergy model was more potent than that of EGCG, probably due to the efficiency of absorption from the intestine. However, the functional potency of these EGCGs is controversial in each disease model. We previously observed that EGCG suppressed inflammatory bone resorption and prevented alveolar bone loss in a mouse model of periodontosis. In this study, we examined the role of EGCG3″Me in bone resorption using a mouse model of periodontitis. Lipopolysaccharide (LPS)-induced osteoclast formation was suppressed by adding EGCG3″Me to cocultures of osteoblasts and bone marrow cells, and LPS-induced bone resorption was also inhibited by EGCG3″Me in calvarial organ cultures. EGCG3″Me acted on osteoblasts and suppressed prostaglandin E (PGE) production, which is critical for inflammatory bone resorption, by inhibiting the expression of COX-2 and mPGES-1, key enzymes for PGE synthesis. In osteoclast precursor macrophages, EGCG3″Me suppressed RANKL-dependent differentiation into mature osteoclasts. In a mouse model of periodontitis, LPS-induced bone resorption was suppressed by EGCG3″Me in organ culture of mouse alveolar bone, and the alveolar bone loss was further attenuated by the treatment of EGCG3″Me in the lower gingiva in vivo. EGCG3″Me may be a potential natural compound for the protection of inflammatory bone loss in periodontitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...