Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38792722

RESUMO

Microbially influenced corrosion (MIC) is a potentially critical degradation mechanism for a wide range of materials exposed to environments that contain relevant microorganisms. The likelihood and rate of MIC are affected by microbiological, chemical, and metallurgical factors; hence, the understanding of the mechanisms involved, verification of the presence of MIC, and the development of mitigation methods require a multidisciplinary approach. Much of the recent focus in MIC research has been on the microbiological and chemical aspects, with less attention given to metallurgical attributes. Here, we address this knowledge gap by providing a critical synthesis of the literature on the metallurgical aspects of MIC of carbon steel, a material frequently associated with MIC failures and widely used in construction and infrastructure globally. The article begins by introducing the process of MIC, then progresses to explore the complexities of various metallurgical factors relevant to MIC in carbon steel. These factors include chemical composition, grain size, grain boundaries, microstructural phases, inclusions, and welds, highlighting their potential influence on MIC processes. This review systematically presents key discoveries, trends, and the limitations of prior research, offering some novel insights into the impact of metallurgical factors on MIC, particularly for the benefit of those already familiar with other aspects of MIC. The article concludes with recommendations for documenting metallurgical data in MIC research. An appreciation of relevant metallurgical attributes is essential for a critical assessment of a material's vulnerability to MIC to advance research practices and to broaden the collective knowledge in this rapidly evolving area of study.

2.
Polymers (Basel) ; 15(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37242965

RESUMO

This experimental study investigates the effect of scarf geometry in restoring the impact response of scarf-patched 3 mm thick glass-fiber reinforced polymer (GFRP) matrix composite laminates. Traditional circular along with rounded rectangular scarf patch configurations are considered repair patches. Experimental measurements revealed that the temporal variations of force and energy response of the pristine specimen are close to that of circular repaired specimens. The predominant failure modes were witnessed only in the repair patch which includes matrix cracking, fiber fracture, and delamination, and no discontinuity in the adhesive interface was witnessed. When compared with the pristine samples, the top ply damage size of the circular repaired specimens are larger by 9.91%, while that of the rounded rectangular repaired specimens is larger by 434.23%. The results show that circular scarf repair is a more suitable choice of repair approach under the condition of a 37 J low-velocity impact event even though the global force-time response is similar.

3.
Acta Biomater ; 126: 339-349, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727196

RESUMO

The dactyl club of stomatopods is a biological hammer used to strike on hard-shell preys. To serve its function, the club must be imparted with a high tolerance against both contact stresses and fracture. While the contact mechanics of the club has been established, fracture toughness characterization has so far remained more elusive and semi-quantitative using nanoindentation fracture methods. Here, we used microcantilever fracture specimens with a chevron-notched crack geometry to quantitatively evaluate the fracture response of the impact region of dactyl clubs. The chevron-notched geometry was selected as it minimizes surface-related artefacts due to ion milling, and further allows to carry out fracture tests on samples free of pre-cracks with stable crack propagation even for brittle materials. Both linear elastic as well as elastic-plastic fracture mechanics methods, together with finite element modelling, were employed to analyse the fracture data. We find that crack-tip plastic dissipation is the main mechanism contributing to the fracture properties of the dactyl club material. Our study also suggests that the chevron-notched crack geometry is a suitable method to quantitatively assess the fracture toughness of hard biological materials. STATEMENT OF SIGNIFICANCE: Characterizing the fracture resistance of biomineralized structures is essential to draw their structure-properties relationships. Yet measuring the fracture properties of such materials is often hampered by their small size and irregular shape. Indentation fracture is used to circumvent these issues but does not discriminate between the elastic and elastic-plastic contributions to the fracture resistance. The dactyl club "hammer" of mantis shrimps is a biological material whose fracture properties are central to its function. A microfracture study was conducted using microcantilever specimens with chevron-notched crack geometry to assess the fracture toughness. Adopting linear elastic and elastic-plastic fracture mechanics protocols, we find that plastic dissipation is the major contribution to the fracture response of the hypermineralized impact region of the dactyl club.


Assuntos
Fraturas Ósseas , Plásticos , Animais , Crustáceos , Estresse Mecânico
4.
Materials (Basel) ; 12(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394741

RESUMO

Fatigue is a dominant failure mechanism of several engineering components. One technique for increasing the fatigue life is by inducing surface residual stress to inhibit crack initiation. In this review, a microstructural study under various bulk (such as severe plastic deformation) and surface mechanical treatments is detailed. The effect of individual microstructural feature, residual stress, and strain hardening on mechanical properties and fatigue crack mechanisms are discussed in detail with a focus on nickel-based superalloys. Attention is given to the gradient microstructure and interface boundary behavior for the mechanical performance. It is recommended that hybrid processes, such as shot peening (SP) followed by deep cold rolling (DCR), could enhance fatigue life. The technical and scientific understanding of microstructural features delineated here could be useful for developing materials for fatigue performance.

5.
Nat Mater ; 14(9): 943-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26053761

RESUMO

The structure of the stomatopod dactyl club--an ultrafast, hammer-like device used by the animal to shatter hard seashells--offers inspiration for impact-tolerant ceramics. Here, we present the micromechanical principles and related micromechanisms of deformation that impart the club with high impact tolerance. By using depth-sensing nanoindentation with spherical and sharp contact tips in combination with post-indentation residual stress mapping by Raman microspectroscopy, we show that the impact surface region of the dactyl club exhibits a quasi-plastic contact response associated with the interfacial sliding and rotation of fluorapatite nanorods, endowing the club with localized yielding. We also show that the subsurface layers exhibit strain hardening by microchannel densification, which provides additional dissipation of impact energy. Our findings suggest that the club's macroscopic size is below the critical size above which Hertzian brittle cracks are nucleated.


Assuntos
Estruturas Animais/fisiologia , Apatitas , Nanotubos , Estresse Mecânico , Estruturas Animais/anatomia & histologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...