Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(32): 38454-38462, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527915

RESUMO

Developing stable cathode materials that are resistant to storage degradation is essential for practical development and industrial processing of Na-ion batteries as many sodium layered oxide materials are susceptible to hygroscopicity and instability upon exposure to ambient air. Among the various layered compounds, Fe-substituted O3-type Na(Ni1/2Mn1/2)1-xFexO2 materials have emerged as a promising option for high-performance and low-cost cathodes. While previous reports have noted the decent air-storage stability of these materials, the role and origin of Fe substitution in improving storage stability remain unclear. In this study, we investigate the air-resistant effect of Fe substitution in O3-Na(Ni1/2Mn1/2)1-xFexO2 cathode materials by performing systematic surface and structural characterizations. We find that the improved storage stability can be attributed to the multifunctional effect of Fe substitution, which forms a surface protective layer containing an Fe-incorporated spinel phase and decreases the thermodynamical driving force for bulk chemical sodium extraction. With these mechanisms, Fe-containing cathodes can suppress the cascades of cathode degradation processes and better retain the electrochemical performance after air storage.

2.
ACS Appl Mater Interfaces ; 15(8): 10593-10605, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36797671

RESUMO

Barite (BaSO4) is a common additive in lead-acid batteries, where it acts as a nucleating agent to promote the reversible formation and dissolution of PbSO4 during battery cycling. However, little is known about the molecular-scale mechanisms that control the nucleation and cyclic evolution of PbSO4 over a battery's lifetime. In this study, we explore the responses of a barite (001) surface to cycles of high and low lead concentrations in 100 mM sulfuric acid solution using in situ atomic force microscopy and high-resolution X-ray reflectivity. We find that PbSO4 epitaxial films readily nucleate on the barite surface, even from solutions that are undersaturated relative to bulk PbSO4. Despite this, barite (001) proves to be an ineffective nucleator of bulk PbSO4, as multilayer growth is suppressed even in highly supersaturated solutions. Instead, we find evidence that Pb2+ ions can directly exchange with Ba2+ to create mixed (Ba,Pb)SO4 surfaces. These chemically mixed surfaces do not host PbSO4 monolayers as readily as pristine barite, and the original reactivity is not regained until a fresh surface is re-established by aggressive etching. Our results can be partly explained by traditional models of thin-film growth, which predict a Stranski-Krastanov (S-K) growth mode, where monolayer films are stabilized by a reduction in surface energy, but multilayer growth is inhibited by epitaxial strain. Complementary density functional theory calculations confirm the basic energetic terms of the model but also show evidence for thickness-dependent energetics that are more complex than would be predicted from traditional models. The experimental results are better understood by extending the model to consider the formation of mixed surfaces and films, which have reduced strain and interfacial energies relative to pure films while also being stabilized by entropy of mixing. These insights into nonstoichiometric heteroepitaxy will enable better predictions of how barite affects PbSO4 nucleation in battery environments.

3.
ACS Appl Mater Interfaces ; 13(34): 40502-40512, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415140

RESUMO

Simply mixing several lithium salts in one electrolyte to obtain blended salt electrolytes has been demonstrated as a promising strategy to formulate advanced electrolytes for lithium metal batteries (LMBs) and lithium-ion batteries (LIBs). In this study, we report the use of dual-salt electrolytes containing lithium hexafluorophosphate (LiPF6) and lithium difluorophosphate (LiDFP) in ethylene carbonate/ethyl methyl carbonate (EC/EMC) mixture and tested them in layered high-nickel LIB cells. LiNi0.94Co0.06O2 was synthesized through a coprecipitation method and was used as a representative high-nickel cathode for the U.S. DOE realizing next-generation cathode (RNGC) deep dive program. The ionic conductivity of dual-salt electrolytes can be maintained by controlling the amount of LiDFP. Techniques including 1H Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-mass spectrometry (ICP-MS), and differential voltage analysis (DVA) were used to understand the improved performance. The multifaceted benefits of using the dual-salt electrolytes include (1) reduced transesterification, (2) formation of a stable cathode electrolyte interface, and (3) mitigation of cathode degradation at high voltages, especially stabilization of oxide particles during the H2 ↔ H3 transformation.

4.
Phys Chem Chem Phys ; 22(42): 24490-24497, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33089273

RESUMO

The composition, structure and phase transformations occurring on cathode surfaces greatly affect the performance of Li-ion batteries. Li-Ion diffusion and surface-electrolyte interaction are two major phenomena that impact the capacity and cell impedance. The effects of surface reconstruction (SR) of cathode materials on the performance of Li-ion batteries are of current interest. However, the origin and evolution of the SR are still not well understood. In this work, density functional theory (DFT) calculations are used to investigate the processes taking place during surface segregation and reconstruction. Facet dependent segregation was found in Li(Ni1-x-yMnxCoy)O2 (NMC) cathodes. Specifically, Co tends to segregate to the (104) surface of the primary particles within the transition metal layer, while Ni ions tend to segregate to the (012) surface in the Li layer, forming a SR. Experimental evidence shows the SR to be epitaxial with the bulk of the as-synthesized material, and the new SR phase is pinned to the NMC unit cell leading to a strained SR. Here, we show that strain can stabilize a spinel structure of the SR layers. Understanding the effects of surface strain opens a new avenue for the design of cathode materials with enhanced surface properties.

5.
Nat Commun ; 10(1): 4946, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666508

RESUMO

Due to their exceptional high energy density, lithium-ion batteries are of central importance in many modern electrical devices. A serious limitation, however, is the slow charging rate used to obtain the full capacity. Thus far, there have been no ways to increase the charging rate without losses in energy density and electrochemical performance. Here we show that the charging rate of a cathode can be dramatically increased via interaction with white light. We find that a direct exposure of light to an operating LiMn2O4 cathode during charging leads to a remarkable lowering of the battery charging time by a factor of two or more. This enhancement is enabled by the induction of a microsecond long-lived charge separated state, consisting of Mn4+ (hole) plus electron. This results in more oxidized metal centers and ejected lithium ions are created under light and with voltage bias. We anticipate that this discovery could pave the way to the development of new fast recharging battery technologies.

6.
ACS Appl Mater Interfaces ; 9(47): 41291-41302, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29091400

RESUMO

Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode-electrolyte interface. In this paper, we systematically studied the effect of the composition of Ni-rich LiNixMnyCo1-x-yO2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi0.5Mn0.3Co0.2O2 (NMC532) to LiNi0.6Mn0.2Co0.2O2 (NMC622) and LiNi0.8Mn0.1Co0.1O2 (NMC811) was found to facilitate the diffusion of surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials. These results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.

7.
ACS Appl Mater Interfaces ; 8(26): 16708-17, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27299505

RESUMO

Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling.

8.
Nat Commun ; 7: 11892, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283250

RESUMO

Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.

9.
ACS Appl Mater Interfaces ; 8(17): 11108-21, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27031889

RESUMO

Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of off-stoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of which adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes.

10.
J Phys Chem Lett ; 6(23): 4675-9, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26544015

RESUMO

To address the challenge of fast, direct atomic-scale visualization of the migration of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ∼0.1 s per frame) to visualize the migration of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the surface transport mechanisms. Density functional theory (DFT) calculations provided estimates of the migration energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow visualization and fundamental understanding of surface migration phenomena pertaining to supported catalysts and other materials.

11.
Phys Chem Chem Phys ; 17(37): 24382-91, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26334949

RESUMO

Li- and Mn-rich layered oxides with composition xLi2MnO3·(1 -x)LiMO2 enable high capacity and energy density Li-ion batteries, but suffer from degradation with cycling. Evidence of atomic instabilities during the first charge are addressed in this work with X-ray absorption spectroscopy, first principles simulation at the GGA+U level, and existing literature. The pristine material of composition xLi2MnO3·(1 -x)LiMn0.5Ni0.5O2 is assumed in the simulations to have the form of LiMn2 stripes, alternating with NiMn stripes, in the metal layers. The charged state is simulated by removing Li from the Li layer, relaxing the resultant system by steepest descents, then allowing the structure to evolve by molecular dynamics at 1000 K, and finally relaxing the evolved system by steepest descents. The simulations show that about » of the oxygen ions in the Li2MnO3 domains are displaced from their original lattice sites, and form oxygen-oxygen bonds, which significantly lowers the energy, relative to that of the starting structure in which the oxygen sublattice is intact. An important consequence of the displacement of the oxygen is that it enables about ⅓ of the (Li2MnO3 domain) Mn ions to migrate to the delithiated Li layers. The decrease in the coordination of the Mn ions is about twice that of the Ni ions. The approximate agreement of simulated coordination number deficits for Mn and Ni following the first charge with analysis of EXAFS measurements on 0.3Li2MnO3·0.7LiMn0.5Ni0.5O2 suggests that the simulation captures significant features of the real material.

12.
J Am Chem Soc ; 137(6): 2328-35, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25634302

RESUMO

Direct observations of structure-electrochemical activity relationships continue to be a key challenge in secondary battery research. (6)Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can quantitatively characterize local lithium environments on the subnanometer scale that dominates the free energy for site occupation in lithium-ion (Li-ion) intercalation materials. In the present study, we use this local probe to gain new insights into the complex electrochemical behavior of activated 0.5(6)Li2MnO3·0.5(6)LiMn(0.5)Ni(0.5)O2, lithium- and manganese-rich transition-metal (TM) oxide intercalation electrodes. We show direct evidence of path-dependent lithium site occupation, correlated to structural reorganization of the metal oxide and the electrochemical hysteresis, during lithium insertion and extraction. We report new (6)Li resonances centered at ∼1600 ppm that are assigned to LiMn6-TM(tet) sites, specifically, a hyperfine shift related to a small fraction of re-entrant tetrahedral TMs (Mn(tet)), located above or below lithium layers, coordinated to LiMn6 units. The intensity of the TM layer lithium sites correlated with tetrahedral TMs loses intensity after cycling, indicating limited reversibility of TM migrations upon cycling. These findings reveal that defect sites, even in dilute concentrations, can have a profound effect on the overall electrochemical behavior.

13.
ACS Nano ; 8(3): 2399-409, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24506489

RESUMO

Single-walled carbon nanotubes (SWCNTs) have emerged as one of the leading additives for high-capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. However, since as-grown SWCNTs possess a distribution of physical and electronic structures, it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Toward this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum-filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts, which is consistent with ab initio molecular dynamics and density functional theory calculations in the limit of isolated SWCNTs. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations that show increased lithiation of semiconducting SWCNTs in the limit of small SWCNT-SWCNT spacing. Overall, these results will inform ongoing efforts to utilize SWCNTs as conductive additives in nanocomposite lithium ion battery electrodes.

14.
ChemSusChem ; 6(7): 1196-202, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670967

RESUMO

Nonaqueous lithium-oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium-oxygen batteries. We demonstrate that the major discharge product formed in the lithium-oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium-oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide-type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Fenômenos Magnéticos , Oxigênio/química , Condutividade Elétrica , Modelos Moleculares , Conformação Molecular , Peróxidos/química , Teoria Quântica , Propriedades de Superfície
15.
J Chem Phys ; 136(4): 044704, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22299911

RESUMO

We observed an epitaxial, air-stable, partially registered (2 × 1) oxide bilayer on Pt (001) nanofacets [V. Komanicky, A. Menzel, K.-C. Chang, and H. You, J. Phys. Chem. 109, 23543 (2005)]. The bilayer is made of two half Pt layers; the top layer has four oxygen bonds and the second layer two. The positions and oxidation states of the Pt atoms are determined by analyzing crystal truncation rods and resonance scattering data. The positions of oxygen atoms are determined by density functional theory (DFT) calculations. Partial registry on the nanofacets and the absence of such registry on the extended Pt (001) surface prepared similarly are explained in DFT calculations by strain relief that can be accommodated only by nanoscale facets.

16.
J Am Chem Soc ; 131(16): 5732-3, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19348484

RESUMO

We produced millions of morphologically identical platinum catalyst nanoparticles in the form of ordered arrays epitaxially grown on (111), (100), and (110) strontium titanate substrates using electron beam lithography. The ability to design, produce, and characterize the catalyst nanoparticles allowed us to relate microscopic morphologies with macroscopic catalytic reactivities. We evaluated the activity of three different arrays containing different ratios of (111) and (100) facets for an oxygen-reduction reaction, the most important reaction for fuel cells. Increased catalytic activity of the arrays points to a possible cooperative interplay between facets with different affinities to oxygen. We suggest that the surface area of (100) facets is one of the key factors governing catalyst performance in the electrochemical reduction of oxygen molecules.

17.
J Phys Chem B ; 109(5): 1839-48, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16851166

RESUMO

The C-O stretching frequency (nu(CO)) of atop CO/Pt in PtRu alloys is compositionally tuned in proportion to the Pt mole percent. The application of a Blyholder-Bagus type mechanism (i.e., increased back-donation from the metal d-band to the hybridized 2pi CO molecular orbitals (MOs)) to compositional tuning has been paradoxical because (1) a Pt-C bond contraction, expected with increased back-donation as the Pt mole percent is reduced, is not observed (i.e., calculated Pt-C bond is either elongated or insensitive to alloying and the binding energies of CO/Pt decrease with alloying) and (2) the lowering d-band center and increased d-band vacancies upon alloying (suggesting less back-donation to the higher energy metal hybridized 2pi CO MOs) must be reconciled with the alloy-induced red shift of the nu(CO). A library of spin-optimized Pt and Pt alloy clusters was the basis of density functional theory (DFT) calculations of CO binding energies, nu(CO) values, shifts, and broadening of 5sigma/2pi CO MO upon hybridization with the alloy orbitals and a DFT derived Mulliken electron population analysis. The DFT results, combined with FEFF8 local density of states (LDOS) calculations, validate a 5sigma donation-2pi back-donation mechanism, reconciling the direction of alloy compositional tuning with the lowering of the d-band center and increased vacancies. Although the d-band center decreases in energy with alloying, an asymmetric increase in the dispersion of the d-band is accompanied by an upshift of the metal cluster HOMO level. Concomitantly, the hybridization and renormalization of the CO 5sigma/2pi states results in a broadening of the 5sigma/2pi manifold with additional lower energy states closer to the upshifted (with respect to the pure Pt cluster) HOMO of the alloy cluster. The dispersion toward higher energies of the alloy d-density of states results in more 5sigma/2pi CO filled states (i.e., enhanced 2pi-back-donation). Finally, Mulliken and FEFF8 electron population analysis shows that the increase of the average d-band vacancies upon alloying and additional 2pi back-donation are not mutually exclusive. The d-electron density of the CO-adsorbed Pt atom increases with alloying while the average d-electron density throughout the cluster is reduced. The localized electron density is manifested as an electrostatic wall effect, preventing the Pt-C bond contractions expected with increased back-donation to the 2pi CO MOs.

18.
J Phys Chem B ; 109(26): 12738-41, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16852578

RESUMO

Oxidative fragmentation of the clusters Os(3)(CO)(12) adsorbed on MgO powder was investigated by X-ray absorption spectroscopy and scanning transmission electron microscopy (STEM). Exposure of the clusters to air leads to their fragmentation, oxidation of the osmium, and formation of ensembles consisting of three Os atoms. X-ray absorption near-edge spectra demonstrate the oxidative nature of the fragmentation process. Extended X-ray absorption fine structure (EXAFS) spectra indicate an average Os-Os distance of 3.33 Angstrom and an Os-Os coordination number of 2, consistent with the formation of ensembles of three Os atoms on the support. STEM images confirm the presence of such trinuclear ensembles, and the diameters of the observed scattering centers (6.0 Angstrom) match that indicated by the EXAFS results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...