Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(49): 31936-31942, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344848

RESUMO

Apatite-type lanthanum silicate (LSO) exhibits high oxide-ion conductivity and has recently garnered attention as a potential solid electrolyte for high-temperature solid oxide fuel cells and oxygen sensors that operate in the low- and intermediate-temperature ranges (300-500 °C). LSO exhibits anisotropic oxide-ion conduction along with high c-axis-oriented oxide-ion conductivity. To obtain solid electrolytes with high oxide-ion conductivity, a technique for growing crystals oriented along the c-axis is required. For mass production and upscaling, we have thus far focused on the vapor-phase synthesis of c-axis-oriented apatite-type LSO and successfully grew polycrystals of highly c-axis-oriented boron-substituted apatite-type lanthanum silicate (c-LSBO) using B2O3 vapor. Here, we investigated the mechanism of c-LSBO crystal growth to determine why the utilization of B2O3 vapor resulted in such a strong c-axis crystal orientation. The synthesis of c-LSBO by the B2O3 vapor-phase method results in crystal growth accompanied by the diffusion of B2O3 supplied from another new compound that formed on the surface of the La2SiO5 disk, LaBO3. In addition, c-LSBO crystals are formed not only by vapor-solid reactions but also by solid-solid and liquid-solid reactions. The increase in the c-axis orientation degree might be due to the increase in the amount of the liquid-phase interface.

2.
ACS Appl Mater Interfaces ; 12(19): 21515-21520, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320195

RESUMO

Nowadays, monitoring and recording CO2 gas has become more and more important in various areas, leading to increasing demand for developing high-sensitive CO2 sensors. In this study, a novel potentiometric CO2 gas sensor is designed based on a new solid electrolyte of Y-doped La9.66Si5.3B0.7O26.14 (Y-LSBO), coated with the Li2CeO3-Au-Li2CO3 composite as a sensing electrode and Pt as a reference electrode. With the optimized composition of a sensing electrode, the electromotive force (EMF) varies linearly with the logarithm of the CO2 concentration in the range of 400-4000 ppm, exhibiting an excellent Nernstian response to CO2 gas in both dry and humid atmospheres. The fabricated CO2 sensor can be well operated at 400 °C in a dry atmosphere and 450 °C in a humid atmosphere. Based on the results, we have proposed that the good CO2 sensing performance may be associated with Li2CeO3 playing a role of "ionic bridge" between the O2- conductor (Y-LSBO) and the Li+ conductor (Li2CO3). This study not only shows the promising potential of a Y-LSBO solid electrolyte utilized in the field of gas sensors but also enriches the research of solid electrolyte-based potentiometric CO2 gas sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...