Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0297232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354109

RESUMO

Exophiala is a black fungi of the family Herpotrichiellaceae that can be found in a wide range of environments like soil, water and the human body as potential opportunistic pathogen. Some species are known to be extremophiles, thriving in harsh conditions such as deserts, glaciers, and polluted habitats. The identification of novel Exophiala species across diverse environments underlines the remarkable biodiversity within the genus. However, its classification using traditional phenotypic and phylogenetic analyses has posed a challenges. Here we describe a novel taxon, Exophiala chapopotensis sp. nov., strain LBMH1013, isolated from oil-polluted soil in Mexico, delimited according to combined morphological, molecular, evolutionary and statistics criteria. This species possesses the characteristic dark mycelia growing on PDA and tends to be darker in the presence of hydrocarbons. Its growth is dual with both yeast-like and hyphal forms. LBMH1013 differs from closely related species such as E. nidicola due to its larger aseptate conidia and could be distinguished from E. dermatitidis and E. heteromorpha by its inability to thrive above 37°C or 10% of NaCl. A comprehensive genomic analyses using up-to-date overall genome relatedness indices, several multigene phylogenies and molecular evolutionary analyzes using Bayesian speciation models, further validate its species-specific transition from all current Exophiala/Capronia species. Additionally, we applied the phylophenetic conceptual framework to delineate the species-specific hypothesis in order to incorporate this proposal within an integrative taxonomic framework. We believe that this approach to delimit fungal species will also be useful to our peers.


Assuntos
Ascomicetos , Exophiala , Humanos , Exophiala/genética , Saccharomyces cerevisiae , Filogenia , México , Teorema de Bayes
2.
J Fungi (Basel) ; 6(3)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823980

RESUMO

Since Aromatic hydrocarbons are recalcitrant and toxic, strategies to remove them are needed. The aim of this work was to isolate fungi capable of using aromatic hydrocarbons as carbon sources. Two isolates from an oil polluted site in Mexico were identified through morphological and molecular markers as a novel Rhodotorula sp. and an Exophiala sp. Both strains were able to grow in a wide range of pH media, from 4 to 12, showing their optimal growth at alkaline pH's and are both halotolerant. The Exophiala strain switched from hyphae to yeast morphotype in high salinity conditions. To the best of our knowledge, this is the first report of salt triggering dimorphism. The Rhodotorula strain, which is likely a new undescribed species, was capable of removing singled ringed aromatic compounds such as benzene, xylene, and toluene, but could not remove benzo[a] pyrene nor phenanthrene. Nevertheless, these hydrocarbons did not impair its growth. The Exophiala strain showed a different removal capacity. It could remove the polyaromatic hydrocarbons but performed poorly at removing toluene and xylene. Nevertheless, it still could grow well in the presence of the aromatic compounds. These strains could have a potential for aromatic compounds removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...