Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Magn Reson Med ; 90(4): 1728-1737, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350426

RESUMO

PURPOSE: To improve intraoral transverse loop coil design for high-resolution dental MRI. METHODS: The transverse intraoral loop coil (tLoop) was modified (mtLoop) by overlapping the feed port conductors, bending the posterior section, introducing a parallel plate capacitor, optimizing the insulation thickness, and using it in receive-only mode. In addition, an MR-silent insulation was introduced. The performances of the mtLoop and tLoop coils were compared in terms of sensitivity, image SNR, and eddy currents using electromagnetic simulations and MRI measurements at 3T. RESULTS: The receive-only mode of the mtLoop increases the sensitivity at the apices of the roots, and the overlapped feed port design eliminated signal voids along the incisors. The bent posterior section with the parallel plate capacitor reduced the unwanted signal of the tongue by a factor of 2.3 in the selected region off interest and lowered the eddy currents by 10%. The proposed new coil provided higher SNR by elevenfold and 2.5-fold at the incisors and apices of the molar roots within the selected regions of interest, respectively, in the experiments, as well as improved comfort. Optimal insulation thickness was determined as 1 mm. With the mtLoop, a (250 µm)3 isotropic resolution of the dental arch could be realized using a UTE sequence within 2 min total acquisition time. A T2 -SPACE protocol with (350 µm)2 in-plane resolution was also demonstrated. CONCLUSION: The proposed new coil offers higher SNR at the incisors and apices of the molar roots, less unwanted signals from tongue, lower eddy currents, and improved patient comfort.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Humanos , Desenho de Equipamento , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
2.
IEEE Trans Biomed Circuits Syst ; 17(3): 610-620, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171925

RESUMO

Demonstrated is a standalone RF self-interference canceller for simultaneous transmit and receive (STAR) magnetic resonance imaging (MRI) at 1.5T. Standalone STAR cancels the leakage signal directly coupled between transmit and receive RF coils. A cancellation signal, introduced by tapping the input of a transmit coil with a power divider, is manipulated with voltage-controlled attenuators and phase shifters to match the leakage signal in amplitude, 180° out of phase, to exhibit high isolation between the transmitter and receiver. The cancellation signal is initially generated by a voltage-controlled oscillator (VCO); therefore, it does not require any external RF or synchronization signals from the MRI console for calibration. The system employs a field programmable gate array (FPGA) with an on-board analog to digital converter (ADC) to calibrate the cancellation signal by tapping the receive signal, which contains the leakage signal. Once calibrated, the VCO is disabled and the transmit signal path switches to the MRI console for STAR MR imaging. To compensate for the changes of parameters in RF sequences after the automatic calibration and to further improve isolation, a wireless user board that uses an ESP32 microcontroller was built to communicate with the FPGA for final fine-tuning of the output state. The standalone STAR system achieved 74.2 dB of isolation with a 94 second calibration time. With such high isolation, in-vivo MR images were obtained with approximately 40 mW of RF peak power.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Calibragem , Desenho de Equipamento
3.
J Endod ; 49(6): 703-709, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972896

RESUMO

INTRODUCTION: Vertical root fracture (VRF) in root-canal-treated teeth frequently results in tooth loss, partly because VRFs are difficult to diagnose and when detected the fracture is often beyond the point of preservation with surgical intervention. Nonionizing magnetic resonance imaging (MRI) has demonstrated the ability to detect small VRFs, but it is unknown how its diagnostic capabilities compare with the current imaging standard for VRF detection, cone-beam computed tomography (CBCT). This investigation aimed to compare the sensitivity and specificity between MRI and CBCT for detecting VRF, using micro-computed tomography (microCT) as a reference. METHODS: A total of 120 extracted human tooth roots were root canal treated using common techniques, and VRFs were mechanically induced in a proportion. Samples were imaged using MRI, CBCT, and microCT. Axial MRI and CBCT images were examined by 3 board-certified endodontists, who evaluated VRF status (yes/no) and gave a confidence assessment for that decision, from which a receiver operating characteristic curve was generated. Intra- and inter-rater reliability were calculated, sensitivity and specificity, and area under the curve. RESULTS: Intra-rater reliability was 0.29-0.48 for MRI and 0.30-0.44 for CBCT. Inter-rater reliability for MRI was 0.37 and for CBCT 0.49. Sensitivity was 0.66 (95% confidence interval [CI], 0.53-0.78) and 0.58 (95% CI, 0.45-0.70), and specificity 0.72 (95% CI, 0.58-0.83) and 0.87 (95% CI, 0.75-0.95) for MRI and CBCT, respectively. Area under the curve was 0.74 (95% CI, 0.65-0.83) for MRI and 0.75 (95% CI, 0.66-0.84) for CBCT. CONCLUSIONS: There was no significant difference in sensitivity or specificity between MRI and CBCT in detecting VRF, despite the early-stage development of MRI.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Fraturas dos Dentes , Humanos , Microtomografia por Raio-X , Fraturas dos Dentes/diagnóstico por imagem , Raiz Dentária/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento por Ressonância Magnética
4.
J Endod ; 48(11): 1414-1420.e1, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100083

RESUMO

INTRODUCTION: Vertical root fracture (VRF) in root canal-treated (RCT) teeth is a common cause of pain, bone resorption, and tooth loss. VRF is also difficult to diagnose and measure. Magnetic resonance imaging (MRI) has the potential to identify VRF due to beneficial partial volume averaging, without using ionizing radiation. This investigation aimed to describe the narrowest VRFs detectable based on MRI, using micro-computed tomography (microCT) as the reference standard and proposes a method using profile integrals to measure the widths of small VRFs. METHODS: VRFs were induced in 62 RCT tooth root samples. All samples were imaged in a phantom using MRI and reference imaging was obtained using microCT. The stacks of 3-dimensional axial MRIs were assessed by 3 board-certified endodontists. Evaluators determined the most coronal slice within the stack that was discernible as the extent of the VRF. This slice was measured on correlated microCT sections to determine the minimum VRF width (µm) detectable using a profile integral-based method to measure small fractures and negate the effects of the point spread function. RESULTS: Using profile integrals to measure VRF width was repeatable and resulted in estimates that were on average 1 µm smaller than known reference widths. Adjusted median VRF width detected using MRI was 45 µm (first quartile: 26 µm, third quartile: 64 µm). CONCLUSION: Using profile integrals is a valid way to estimate small VRF width. The MRI approach demonstrated ability to repeatedly detect VRFs as small as 26 µm.


Assuntos
Fraturas dos Dentes , Dente não Vital , Humanos , Tomografia Computadorizada de Feixe Cônico , Fraturas dos Dentes/diagnóstico por imagem , Fraturas dos Dentes/patologia , Raiz Dentária/diagnóstico por imagem , Raiz Dentária/patologia , Imageamento por Ressonância Magnética , Tratamento do Canal Radicular , Dente não Vital/diagnóstico por imagem
5.
ACS Appl Mater Interfaces ; 14(37): 41659-41670, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36070361

RESUMO

Deep-seated tumors of the liver, brain, and other organ systems often recur after initial surgical, chemotherapeutic, radiation, or focal treatments. Repeating these treatments is often invasive and traumatic. We propose an iron oxide nanoparticle (IONP)-enhanced precipitating hydrophobic injectable liquid (PHIL, MicroVention inc.) embolic as a localized dual treatment implant for nutrient deprivation and multiple repeatable thermal ablation. Following a single injection, multiple thermal treatments can be repeated as needed, based on monitoring of tumor growth/recurrence. Herein we show the ability to create an injectable stable PHIL-IONP solution, monitor deposition of the PHIL-IONP precipitate dispersion by µCT, and gauge the IONP distribution within the embolic by magnetic resonance imaging. Once precipitated, the implant could be heated to reach therapeutic temperatures >8 °C for thermal ablation (clinical temperature of ∼45 °C), in a model disk and a 3D tumor bed model. Heat output was not affected by physiological conditions, multiple heating sessions, or heating at intervals over a 1 month duration. Further, in ex vivo mice hind-limb tumors, we could noninvasively heat the embolic to an "ablative" temperature elevation of 17 °C (clinically 54 °C) in the first 5 min and maintain the temperature rise over +8 °C (clinically a temperature of 45 °C) for longer than 15 min.


Assuntos
Embolização Terapêutica , Neoplasias , Animais , Dimetil Sulfóxido , Embolização Terapêutica/métodos , Calefação , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos , Neoplasias/tratamento farmacológico , Polivinil/uso terapêutico
6.
Adv Mater Technol ; 7(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35668819

RESUMO

To extend the preservation of donor hearts beyond the current 4-6 h, this paper explores heart cryopreservation by vitrification-cryogenic storage in a glass-like state. While organ vitrification is made possible by using cryoprotective agents (CPA) that inhibit ice during cooling, failure occurs during convective rewarming due to slow and non-uniform rewarming which causes ice crystallization and/or cracking. Here an alternative, "nanowarming", which uses silica-coated iron oxide nanoparticles (sIONPs) perfusion loaded through the vasculature is explored, that allows a radiofrequency coil to rewarm the organ quickly and uniformly to avoid convective failures. Nanowarming has been applied to cells and tissues, and a proof of principle study suggests it is possible in the heart, but proper physical and biological characterization especially in organs is still lacking. Here, using a rat heart model, controlled machine perfusion loading and unloading of CPA and sIONPs, cooling to a vitrified state, and fast and uniform nanowarming without crystallization or cracking is demonstrated. Further, nanowarmed hearts maintain histologic appearance and endothelial integrity superior to convective rewarming and indistinguishable from CPA load/unload control hearts while showing some promising organ-level (electrical) functional activity. This work demonstrates physically successful heart vitrification and nanowarming and that biological outcomes can be expected to improve by reducing or eliminating CPA toxicity during loading and unloading.

7.
Neuroimage ; 251: 118978, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143974

RESUMO

The mammalian neocortex exhibits a stereotypical laminar organization, with feedforward inputs arriving primarily into layer 4, local computations shaping response selectivity in layers 2/3, and outputs to other brain areas emanating via layers 2/3, 5 and 6. It cannot be assumed a priori that these signatures of laminar differences in neuronal circuitry are reflected in hemodynamic signals that form the basis of functional magnetic resonance imaging (fMRI). Indeed, optical imaging of single-vessel functional responses has highlighted the potential limits of using vascular signals as surrogates for mapping the selectivity of neural responses. Therefore, before fMRI can be employed as an effective tool for studying critical aspects of laminar processing, validation with single-vessel resolution is needed. The primary visual cortex (V1) in cats, with its precise neuronal functional micro-architecture, offers an ideal model system to examine laminar differences in stimulus selectivity across imaging modalities. Here we used cerebral blood volume weighted (wCBV) fMRI to examine if layer-specific orientation-selective responses could be detected in cat V1. We found orientation preference maps organized tangential to the cortical surface that typically extended across depth in a columnar fashion. We then examined arterial dilation and blood velocity responses to identical visual stimuli by using two- and three- photon optical imaging at single-vessel resolution-which provides a measure of the hemodynamic signals with the highest spatial resolution. Both fMRI and optical imaging revealed a consistent laminar response pattern in which orientation selectivity in cortical layer 4 was significantly lower compared to layer 2/3. This systematic change in selectivity across cortical layers has a clear underpinning in neural circuitry, particularly when comparing layer 4 to other cortical layers.


Assuntos
Imageamento por Ressonância Magnética , Córtex Visual Primário , Animais , Mapeamento Encefálico/métodos , Gatos , Volume Sanguíneo Cerebral , Humanos , Imageamento por Ressonância Magnética/métodos , Mamíferos , Imagem Óptica
8.
Neuroimage ; 250: 118924, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065267

RESUMO

Understanding the link between the brain activity and behavior is a key challenge in modern neuroscience. Behavioral neuroscience, however, lacks tools to record whole-brain activity in complex behavioral settings. Here we demonstrate that a novel Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) functional magnetic resonance imaging (fMRI) approach enables whole-brain studies in spontaneously behaving head-fixed rats. First, we show anatomically relevant functional parcellation. Second, we show sensory, motor, exploration, and stress-related brain activity in relevant networks during corresponding spontaneous behavior. Third, we show odor-induced activation of olfactory system with high correlation between the fMRI and behavioral responses. We conclude that the applied methodology enables novel behavioral study designs in rodents focusing on tasks, cognition, emotions, physical exercise, and social interaction. Importantly, novel zero echo time and large bandwidth approaches, such as MB-SWIFT, can be applied for human behavioral studies, allowing more freedom as body movement is dramatically less restricting factor.


Assuntos
Comportamento Animal/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Animais , Eletroencefalografia , Desenho de Equipamento , Movimentos da Cabeça , Ratos , Ratos Sprague-Dawley
9.
Magn Reson Med ; 87(6): 2872-2884, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34985145

RESUMO

PURPOSE: To develop a high temporal resolution functional MRI method for tracking repeating events in the brain. METHODS: We developed a novel functional MRI method using multiband sweep imaging with Fourier transformation (SWIFT), termed event-recurring SWIFT (EVER-SWIFT). The method is able to image similar repeating events with subsecond temporal resolution. Here, we demonstrate the use of EVER-SWIFT for detecting functional MRI responses during deep brain stimulation of the medial septal nucleus and during spontaneous isoflurane-induced burst suppression in the rat brain at 9.4 T with 200-ms temporal resolution. RESULTS: The EVER-SWIFT approach showed that the shapes and time-to-peak values of the response curves to deep brain stimulation significantly differed between downstream brain regions connected to the medial septal nucleus, resembling findings obtained with traditional 2-second temporal resolution. In contrast, EVER-SWIFT allowed for detailed temporal measurement of a spontaneous isoflurane-induced bursting activity pattern, which was not achieved with traditional temporal resolution. CONCLUSION: The EVER-SWIFT technique enables subsecond 3D imaging of both stimulated and spontaneously recurring brain activities, and thus holds great potential for studying the mechanisms of neuromodulation and spontaneous brain activity.


Assuntos
Estimulação Encefálica Profunda , Isoflurano , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Isoflurano/farmacologia , Imageamento por Ressonância Magnética/métodos , Ratos
10.
IEEE Trans Biomed Eng ; 68(8): 2563-2573, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33513097

RESUMO

OBJECTIVE: In dental MRI, intraoral coils provide higher signal-to-noise ratio (SNR) than coils placed outside the mouth. This study aims to design an intraoral dipole antenna and demonstrates the feasibility of combining it with an extraoral coil. METHODS: Dipole antenna design was chosen over loop design, as it is open toward the distal; therefore, it does not restrain tongue movement. The dipole design offers also an increased depth-of-sensitivity that allows for MRI of dental roots. Different dipole antenna designs were simulated using a finite-difference-time-domain approach. Ribbon, wire, and multi-wire arms were compared. The best design was improved further by covering the ends of the dipole arms with a high-permittivity material. Phantom and in vivo measurements were conducted on a 3T clinical MRI system. RESULTS: The best transmit efficiency and homogeneity was achieved with a multi-wire curved dipole antenna with 7 wires for each arm. With an additional high-permittivity cap the transmit field inhomogeneity was further reduced from 20% to 5% along the dipole arm. When combined with extraoral flexible surface-coil, the coupling between the coils was less than -32dB and SNR was increased. CONCLUSION: Using intraoral dipole design instead of loop improves patient comfort. We demonstrated feasibility of the intraoral dipole combined with an extraoral flexible coil-array for dental MRI. Dipole antenna enabled decreasing imaging field-of-view, and reduced the prevalent signal from tongue. SIGNIFICANCE: This study highlights the advantages and the main challenges of the intraoral RF coils and describes a novel RF coil that addresses those challenges.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
11.
Magn Reson Med ; 85(2): 831-844, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32892400

RESUMO

PURPOSE: We demonstrate the feasibility of MRI with missing-pulse steady-state free precession (MP-SSFP) in a 4T magnet with artificially degraded homogeneity. METHODS: T1 , T2 , and diffusion contrast of MP-SSFP was simulated with constant and alternate radiofrequency (RF) phase using an extended phase graph. To validate MP-SSFP performance in human brain imaging, MP-SSFP was tested with two types of artificially introduced inhomogeneous magnetic fields: (1) a pure linear gradient field, and (2) a pseudo-linear gradient field introduced by mounting a head-gradient set at 36 cm from the magnet isocenter. Image distortion induced by the nonlinear inhomogeneous field was corrected using B0 mapping measured with MP-SSFP. RESULTS: The maximum flip angle in MP-SSFP was limited to ≤10° because of the large range of resonance frequencies in the inhomogeneous magnetic fields tested in this study. Under this flip-angle limitation, MP-SSFP with constant RF phase provided advantages of higher signal-to-noise ratio and insensitivity to B1+ field inhomogeneity as compared with an alternate RF phase. In diffusion simulation, the steady-state magnetization in constant RF phase MP-SSFP increased with an increase of static field gradient up to 8 to 21 mT/m depending on simulation parameters. Experimental results at 4T validated these findings. In human brain imaging, MP-SSFP preserved sufficient signal intensities, but images showed severe image distortion from the pseudo-linear inhomogeneous field. However, following distortion correction, good-quality brain images were achieved. CONCLUSION: MP-SSFP appears to be a feasible MRI technique for brain imaging in an inhomogeneous magnetic field.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Ondas de Rádio , Razão Sinal-Ruído
12.
Bone ; 143: 115615, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32853850

RESUMO

Bone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk. Characterization of treatment efficacy in bone diseases of altered remodeling is complicated by the lack of imaging modality able to safely monitor material-level and biochemical changes in vivo. To improve upon the current state of bone imaging, we tested the efficacy of Multi Band SWeep Imaging with Fourier Transformation (MB-SWIFT) magnetic resonance imaging (MRI) as a readout of bone derangement in an estrogen deficient ovariectomized (OVX) rat model during growth. MB-SWIFT MRI-derived BMD correlated significantly with BMD measured using micro-computed tomography (µCT). In this rodent model, growth appeared to overcome estrogen deficiency as bone mass continued to increase longitudinally over the duration of the study. Nonetheless, after 10 weeks of intervention, MB-SWIFT detected significant changes consistent with estrogen deficiency in cortical water, cortical matrix organization (T1), and marrow fat. Findings point to MB-SWIFT's ability to quantify BMD in good agreement with µCT while providing additive quantitative outcomes about bone quality in a manner consistent with estrogen deficiency. These results indicate MB-SWIFT as a non-ionizing imaging strategy with value for bone imaging and may be a promising technique to progress to the clinic for monitoring and clinical management of patients with bone diseases such as osteoporosis.


Assuntos
Densidade Óssea , Imageamento por Ressonância Magnética , Animais , Biomarcadores , Feminino , Humanos , Minerais , Ovariectomia , Ratos , Microtomografia por Raio-X
13.
Neuroimage ; 206: 116338, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730923

RESUMO

Functional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice for fMRI investigations, but it has several shortcomings. EPI is one of the loudest sequences and very prone to movement and susceptibility-induced artefacts, making it suboptimal for awake imaging. Additionally, the fast gradient-switching of EPI induces disrupting currents in simultaneous electrophysiological recordings. Therefore, we investigated whether the unique features of Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) overcome these issues at a high 9.4 T magnetic field, making it a potential alternative to EPI. MB-SWIFT had 32-dB and 20-dB lower peak and average sound pressure levels, respectively, than EPI with typical fMRI parameters. Body movements had little to no effect on MB-SWIFT images or functional connectivity analyses, whereas they severely affected EPI data. The minimal gradient steps of MB-SWIFT induced significantly lower currents in simultaneous electrophysiological recordings than EPI, and there were no electrode-induced distortions in MB-SWIFT images. An independent component analysis of the awake rat functional connectivity data obtained with MB-SWIFT resulted in near whole-brain level functional parcellation, and simultaneous electrophysiological and fMRI measurements in isoflurane-anesthetized rats indicated that MB-SWIFT signal is tightly linked to neuronal resting-state activity. Therefore, we conclude that the MB-SWIFT sequence is a robust preclinical brain mapping tool that can overcome many of the drawbacks of conventional EPI fMRI at high magnetic fields.


Assuntos
Artefatos , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento , Ruído , Vigília , Anestésicos Inalatórios , Animais , Imagem Ecoplanar , Análise de Fourier , Isoflurano , Masculino , Ratos , Ratos Wistar , Inconsciência
14.
J Endod ; 45(6): 750-755.e2, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31056300

RESUMO

INTRODUCTION: Magnetic resonance imaging (MRI) has the potential to aid in determining the presence and extent of cracks/fractures in teeth because of better contrast without ionizing radiation. The objectives were to develop MRI criteria for root crack/fracture identification and to establish reliability and accuracy in their detection. METHODS: MRI-based criteria for crack/fracture appearance was developed by an MRI physicist and a panel of 6 dentists. Twenty-nine human adult teeth previously extracted after a clinical diagnosis of a root crack/fracture were frequency matched to 29 controls. Samples were scanned using an in vivo MRI protocol and the reference standard (ie, ex vivo limited field of view cone-beam computed tomographic [CBCT] imaging). A blinded, 4-member panel evaluated the images with a proportion randomly retested to establish intrarater reliability. Overall observer agreement, sensitivity, and specificity were computed for each imaging modality. RESULTS: Subjectively, MRI has increased crack/fracture contrast and is less prone to artifacts from radiodense materials relative to CBCT imaging. Intrarater reliability for MRI was fair to excellent (κ = 0.38-1.00), and for CBCT imaging, it was moderate to excellent (κ = 0.66-1.00). Sensitivity for MRI was 0.59 (95% confidence interval [CI], 0.39-0.76; P = .46), and for CBCT imaging, it was 0.59 (95% CI, 0.59-0.76; P = .46). Specificity for MRI was 0.83 (95% CI, 0.64-0.94; P < .01), and for CBCT imaging, it was 0.90 (95% CI, 0.73-0.98; P < .01). CONCLUSIONS: Despite advantages of increased contrast and the absence of artifacts from radiodense materials in MRI, comparable measures of sensitivity and specificity (to limited field of view CBCT imaging) suggest MRI quality improvements are needed, specifically in image acquisition and postprocessing parameters. Given the early stage of technology development, there may be a use for MRI in detecting cracks/fractures in teeth.


Assuntos
Imageamento por Ressonância Magnética , Fraturas dos Dentes , Adulto , Tomografia Computadorizada de Feixe Cônico , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fraturas dos Dentes/diagnóstico por imagem , Raiz Dentária/diagnóstico por imagem
15.
Magn Reson Med ; 81(3): 1947-1954, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30242896

RESUMO

PURPOSE: The sweep imaging with Fourier transformation (SWIFT) imaging technique has been shown to provide positive contrast from diluted cell suspensions labeled with super-paramagnetic iron oxide (SPIO) in a tissue, as an alternative to T2*-weighted imaging. Here we demonstrate a variation of the SWIFT technique that yields a hyperintense signal from a concentrated cell suspension. The proposed technique provides minimal background signal from host tissue and facilitates visualization of injected cells. METHODS: The proton resonance frequency and linewidth were determined for SPIO solutions of different concentrations. The original SWIFT sequence was modified and a dual saturation Gaussian shape RF pulse with ~200 Hz bandwidth was incorporated into the acquisition protocol to suppress host tissue and fat signals. This modification of the original acquisition protocol permits the detection of a hyperintense signal from grafted cells with minimal background signal from the host tissue. RESULTS: SPIO particles not only induce broadening of NMR line-width but also an initiate proton resonance frequency shift. This shift is linearly proportional to the concentration of the iron oxide particles and induced by the bulk magnetic susceptibility of SPIOs. The shift of the resonance frequency of iron labeled cells allowed us effectively suppress the host tissues with saturation RF pulse to improve MRI detection of grafted cells. CONCLUSIONS: Iron oxide particles increase the resonance frequency of water proton signal. This shift permitted us to add the tissue/fat saturation RF pulse into the original SWIFT acquisition protocol and detect distinct hyperintense signals from grafted cells with minimal background signal from the host tissue.


Assuntos
Compostos Férricos , Processamento de Imagem Assistida por Computador/métodos , Ferro/química , Células-Tronco Mesenquimais/citologia , Animais , Meios de Contraste , Feminino , Ferrocianetos/química , Análise de Fourier , Membro Posterior/patologia , Articulações/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Magnetismo , Nanopartículas de Magnetita/química , Transplante de Células-Tronco Mesenquimais , Camundongos , Imagens de Fantasmas , Ratos
16.
J Magn Reson ; 296: 79-84, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30223154

RESUMO

The dynamics of spin system coupled by chemical exchange between two sites with different chemical shifts during periodic radiofrequency (RF) irradiation was here investigated. When the instantaneous π-flip of effective frequency during the course of frequency sweep was applied, a significant increase of exchange-induced relaxation rate constants was observed for small tip angle of magnetization in the laboratory frame of reference. This increase of the rate constants corresponds to the side bands generated by the periodic irradiation during the RF pulses. The exchange - induced relaxation rate constants depend on the exchange conditions, the RF power and the irradiation period. The described phenomenon promises applications for studying protein dynamics and for generating exchange specific relaxation contrasts in MRI.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Ondas de Rádio , Algoritmos , Simulação por Computador , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Imãs
17.
Neuroimage ; 159: 443-448, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28797739

RESUMO

Recently introduced 3D radial MRI pulse sequence entitled Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) having virtually zero acquisition delay was used to obtain functional MRI (fMRI) contrast in rat's brain at 9.4 T during deep brain stimulation (DBS). The results demonstrate that MB-SWIFT allows functional images free of susceptibility artifacts, and provides an excellent fMRI activation contrast in the brain. Flip angle dependence of the MB-SWIFT fMRI signal and elimination of the fMRI contrast while using saturation bands, indicate a blood flow origin of the observed fMRI contrast. MB-SWIFT fMRI modality permits activation studies in the close proximity to an implanted lead, which is not possible to achieve with conventionally used gradient echo and spin echo - echo planar imaging fMRI techniques. We conclude that MB-SWIFT fMRI is a powerful imaging modality for investigations of functional responses during DBS.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Animais , Processamento de Imagem Assistida por Computador/métodos , Ratos , Ratos Sprague-Dawley
18.
Magn Reson Med ; 78(5): 1900-1910, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28097749

RESUMO

PURPOSE: Conventional T2 -weighted MRI produces a hypointense signal from iron-labeled cells, which renders quantification unfeasible. We tested a SWeep Imaging with Fourier Transformation (SWIFT) MRI pulse sequence to generate a quantifiable hyperintense signal from iron-labeled cells. METHODS: Mesenchymal stem cells (MSCs) were labeled with different concentrations of iron oxide particles and examined for cell viability, proliferation, and differentiation. The SWIFT sequence was optimized to detect and quantify the amount of iron in the muscle tissue after injection of iron oxide solution and iron-labeled MSCs. RESULTS: The incubation of MSCs with iron oxide and low concentration of poly-L-lysine mixture resulted in an internalization of up to 22 pg of iron per cell with no adverse effect on MSCs. Phantom experiments showed a dependence of SWIFT signal intensity on the excitation flip angle. The hyperintense signal from iron-labeled cells or solutions was detected, and an amount of the iron oxide in the tissue was quantified with the variable flip angle method. CONCLUSIONS: The SWIFT sequence can produce a quantifiable hyperintense MRI signal from iron-labeled cells. The graft of 18 x 106 cells was detectable for 19 days after injection and the amount of iron was quantifiable. The proposed protocol simplifies the detection and provides a means to quantify cell numbers. Magn Reson Med 78:1900-1910, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Sobrevivência Celular , Células Cultivadas , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Processamento de Imagem Assistida por Computador , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador
19.
Magn Reson Med ; 78(2): 702-712, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27667655

RESUMO

PURPOSE: To use contrast based on longitudinal relaxation times (T1 ) or rates (R1 ) to quantify the biodistribution of iron oxide nanoparticles (IONPs), which are of interest for hyperthermia therapy, cell targeting, and drug delivery, within primary clearance organs. METHODS: Mesoporous silica-coated IONPs (msIONPs) were intravenously injected into 15 naïve mice. Imaging and mapping of the longitudinal relaxation rate constant at 24 h or 1 week postinjection were performed with an echoless pulse sequence (SWIFT). Alternating magnetic field heating measurements were also performed on ex vivo tissues. RESULTS: Signal enhancement from positive T1 contrast caused by IONPs was observed and quantified in vivo in liver, spleen, and kidney at concentrations up to 3.2 mg Fe/(g tissue wt.) (61 mM Fe). In most cases, each organ had a linear correlation between the R1 and the tissue iron concentration despite variations in intra-organ distribution, degradation, and IONP surface charge. Linear correlation between R1 and volumetric SAR in hyperthermia therapy was observed. CONCLUSION: The linear dependence between R1 and tissue iron concentration in major organs allows quantitative monitoring of IONP biodistribution in a dosage range relevant to magnetic hyperthermia applications, which falls into the concentration gap between CT and conventional MRI techniques. Magn Reson Med 78:702-712, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Meios de Contraste , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Meios de Contraste/análise , Meios de Contraste/química , Meios de Contraste/farmacocinética , Feminino , Rim/metabolismo , Fígado/metabolismo , Nanopartículas de Magnetita/análise , Nanopartículas de Magnetita/química , Camundongos , Camundongos Nus , Baço/metabolismo , Distribuição Tecidual
20.
Magn Reson Med ; 76(6): 1932-1938, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27670251

RESUMO

PURPOSE: To present a practical scheme of a simultaneous radiofrequency (RF) transmit (Tx) and receive (Rx) (STAR) system for MRI, discuss the challenges and solutions, and show preliminary in vivo MR images obtained with this new technique. METHODS: A remotely controlled STAR system was built and tested with a transverse electromagnetic head coil on a 4T (Oxford, 90 cm-bore) MRI scanner equipped with an Agilent DirectDrive console (Agilent, Santa Clara, CA). In vivo head images have been acquired using continuous sweep excitation and acquisition. RESULTS: The bench test and MR experimental results show our STAR system to have high isolation (60 dB) between Tx and Rx, with insensitivity to load swings created by head motion. To acquire in vivo head images, ultralow RF peak power of 50 mW was used. CONCLUSION: A novel motion-insensitive STAR MRI technique was developed and experimentally tested. The first in vivo MR images using this method were acquired. Magn Reson Med 76:1932-1938, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...