Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(16): 6264-6274, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35377373

RESUMO

Double-layered nanosheets containing pH-cleavable polymer networks between two niobate layers were prepared by copolymerization of N-isopropylacrylamide and an acid-degradable crosslinker via surface-initiated atom transfer radical polymerization on the surface of hydrated interlayers (interlayer I) of K4Nb6O17·3H2O and subsequent exfoliation by the introduction of tetra-n-butylammonium (TBA) ions into anhydrous interlayers (interlayer II). Moreover, the double-layered nanosheets were converted into single-layered nanosheets by the cleavage of cross-linking points in polymer networks by lowering pH. Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG) results showed that polymer networks were present, and nanosheets with a thickness of 10.8 ± 1.6 nm were observed by using an atomic force microscope (AFM) after exfoliation using TBA ions. The thickness of the nanosheets was decreased to 6.1 ± 0.9 nm by lowering the pH, and proton nuclear magnetic resonance (1H NMR) and UV-vis spectroscopy showed that the degradation of the cross-linkers proceeded, suggesting that the cleavage of the cross-linking points led to the conversion of double-layered nanosheets into single-layered nanosheets.

2.
Dalton Trans ; 51(9): 3625-3635, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148364

RESUMO

K4Nb6O17·3H2O-based Janus nanosheets with water dispersibility and surface activity were prepared via sequential regioselective surface modification. To provide individual Janus nanosheets with these two properties, phenylphosphonic acid and phosphoric acid were utilized for surface modification at interlayers I and II of K4Nb6O17·3H2O, respectively, and the resulting product was exfoliated into single-layered nanosheets by ultrasonication in water. The resulting aqueous dispersion of the Janus nanosheets showed lower surface tension than pure water, confirming that the Janus nanosheets had surface activity. An o/w emulsion was formed using the Janus nanosheet aqueous dispersion and toluene. In this emulsion, characteristic phenomena, coalescence and Ostwald ripening behaviour of toluene droplets were observed; the appearance of ellipsoidal droplets during coalescence and a rapid Ostwald ripening which differ from those observed for systems using conventional surfactants, were observed. These phenomena likely originated from the unique anisotropic structures of Janus nanosheets with their nm-scale thickness and µm-range lateral size.

3.
Langmuir ; 36(26): 7252-7258, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32423209

RESUMO

Surface modification of niobate nanosheets in a double-Y-type microchannel was achieved for the first time using parallel flows of an aqueous dispersion of nanosheets derived from ion-exchangeable layered perovskite via delamination with a tetrabutylammonium hydroxide aqueous solution and a cyclohexane solution of oleyl phosphate. The surface modification was essentially completed within 4.6 s, and spectroscopic characterization (IR, solid-state 13C and 31P NMR) demonstrated the successful surface modification. The surface modification using a biphasic system in a vial using the same liquids required more than 4 h, indicating the extremely high efficiency of surface modification in the microchannel.

4.
Dalton Trans ; 48(31): 11663-11673, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31250856

RESUMO

Interlayer grafting of kaolinite using trimethylphosphate (TMP), a phosphoric acid triester, was achieved using a methoxy-modified kaolinite (MeO-Kaol) as an intermediate. First, TMP was intercalated between the layers of MeO-Kaol upon dispersing MeO-Kaol to TMP at room temperature (TMP/MeO-Kaol_RT). The X-ray diffraction (XRD) pattern of TMP/MeO-Kaol_RT revealed that the basal spacing of MeO-Kaol was increased from 0.86 to 1.28 nm. The 1.28 nm diffraction line disappeared and the 0.86 nm diffraction line appeared upon washing of TMP/MeO-Kaol_RT with an excess of ethanol. The thermogravimetry (TG) curve of TMP/MeO-Kaol_RT showed mass loss at 50-180 °C. Solid-state 13C nuclear magnetic resonance spectroscopy with cross polarization and magic angle spinning techniques (13C CP/MAS NMR) and Fourier transform infrared spectroscopy (FT-IR) spectra showed the presence of methoxy groups in TMP/MeO-Kaol_RT. The C/P molar ratio of TMP/MeO-Kaol_RT was 3.0. The liquid-state 31P NMR spectrum of the guest species extracted with CDCl3 showed one signal at 3.0 ppm, which was the same as the chemical shift of TMP in CDCl3. These results clearly indicate intercalation of TMP between the layers of MeO-Kaol. Next, the dispersion of MeO-Kaol in TMP was heated at 150 °C under a nitrogen atmosphere (TMP/MeO-Kaol_150). The XRD pattern of TMP/MeO-Kaol_150 revealed that the basal spacing was increased from 0.86 to 1.12 nm. The 1.12 nm diffraction line was scarcely changed upon washing of TMP/MeO-Kaol_150 with an excess of ethanol and water. The TG curve of TMP/MeO-Kaol_150 showed mass loss at 300-400 °C. The 13C CP/MAS NMR and IR spectra showed the presence of TMP moieties in TMP/MeO-Kaol_150. The C/P molar ratio of TMP/MeO-Kaol_150 was 1.7. The solid-state 1H MAS NMR spectrum of TMP/MeO-Kaol_150 revealed the presence of POH groups. SEM images, 27Al MAS NMR spectra and Al/Si molar ratios observed for kaolinite and TMP/MeO-Kaol_150 indicate preservation of the kaolinite structure. These results clearly indicate the proceeding of interlayer grafting of kaolinite using TMP with hydrolysis of a limited amount of P-OMe groups.

5.
Langmuir ; 35(20): 6594-6601, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30955334

RESUMO

Oleyl phosphate-modified HLaNb2O7· xH2O nanosheets (OP_HLaNb nanosheets) were prepared via phase transfer from an aqueous phase, comprising a dispersion of HLaNb2O7· xH2O (HLaNb) nanosheets, formed through the intercalation of tetrabutylammonium ion (TBA+) in the interlayer space of HLaNb and subsequent delamination, to a cyclohexane phase containing oleyl phosphate (OP, a mixture of monoester and diester). The modification of HLaNb nanosheets with OP was essentially completed within 3 days at a pH value of 2 or 4. Both infrared and solid-state 13C cross-polarization and magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of the OP_HLaNb nanosheets showed the presence of OP and/or related species and TBA+ on the HLaNb nanosheet surface. The solid-state 31P MAS NMR spectra of OP_HLaNb nanosheets exhibited new signals at -2 and 0 ppm, the former of which indicates the formation of Nb-O-P bonds. These whole data set obtained by complementary techniques clearly point out the modification of the HLaNb nanosheet surface by OP moieties causing a phase transfer. OP_HLaNb nanosheets showed higher dispersibility in cyclohexane than the OP_HLaNb_interlayer nanosheets, which were prepared via stepwise substitution reactions in the interlayers of HLaNb to achieve surface modification with OP and subsequent exfoliation in cyclohexane. The presence of TBA+ on the HLaNb nanosheets and the use of a liquid-liquid biphasic system were likely to improve the dispersibility. These results show that the preparation of OP-modified HLaNb nanosheets which could be well-dispersed in the cyclohexane phase was successful because of the use of a liquid-liquid biphasic system.

6.
Chem Commun (Camb) ; 54(45): 5756-5759, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29781007

RESUMO

Janus nanosheets were prepared from K4Nb6O17·3H2O by modifying surfaces of their two distinct interlayers in a regioselective and sequential manner and subsequent exfoliation. The surface properties of nanosheets were investigated by phase atomic force microscopy imaging and two types of surfaces were discriminated, indicating that Janus nanosheets were successfully prepared.

7.
ACS Appl Mater Interfaces ; 9(2): 1907-1912, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28051312

RESUMO

Oleyl-phosphate-modified TiO2 nanoparticles (OP_TiO2) were prepared via phase transfer from an aqueous phase containing dispersed TiO2 nanoparticles to a toluene phase containing oleyl phosphate (OP, a mixture of monoester and diester), and employed for the preparation of OP_TiO2/cyclo-olefin polymer (COP) hybrid films with high-refractive indices. The modification of TiO2 by OP was essentially completed by reaction at room temperature for 8 h, and essentially all the TiO2 nanoparticles in the aqueous phase were transferred to the toluene phase. The infrared and solid-state 13C cross-polarization and magic-angle spinning (CP/MAS) NMR spectrum of OP_TiO2 showed the presence of oleyl groups originating from oleyl phosphate. The solid-state 31P MAS NMR spectrum of OP_TiO2 exhibited new signals at -1.4, 2.1, and 4.8 ppm, indicating the formation of Ti-O-P bonds. CHN and inductively coupled plasma analyses revealed that the major species bound to the TiO2 surface was tridentate CH3(CH2)7CH═CH(CH2)8P(OTi)3. These results clearly indicate that the surfaces of the TiO2 nanoparticles were modified by OP moieties via phase transfer. OP_TiO2/COP hybrid films exhibited excellent optical transparency up to 19.1 vol % TiO2 loading, and the light transmittance of the hybrid films with 19.1 vol % TiO2 loading was 99.8% at 633 nm. The refractive index of these hybrid films rose to 1.83.

8.
ACS Appl Mater Interfaces ; 8(50): 34762-34769, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998123

RESUMO

Transparent TiO2/PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO2 content and could be increased up to 1.566 for 6.3 vol % TiO2 content (1.492 for pristine PMMA).

9.
Int J Nanomedicine ; 9 Suppl 1: 117-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24872707

RESUMO

We report here that the direction of aligned cells on nanopatterns can be tuned to a perpendicular direction without use of any biochemical reagents. This was enabled by shape-memory activation of nanopatterns that transition from a memorized temporal pattern to the original permanent pattern by heating. The thermally induced shape-memory nanopatterns were prepared by chemically crosslinking semi-crystalline poly(ε-caprolactone) (PCL) in a mold to show shape-memory effects over its melting temperature (Tm = 33°C). Permanent surface patterns were first generated by crosslinking the PCL macromonomers in a mold, and temporary surface patterns were then embossed onto the permanent patterns. The temporary surface patterns could be easily triggered to transition quickly to the permanent surface patterns by a 37°C heat treatment, while surface wettability was independent of temperature. To investigate the role of dynamic and reversible surface nanopatterns on cell alignment on the PCL films before and after a topographic transition, NIH 3T3 fibroblasts were seeded on fibronectin-coated PCL films with a temporary grooved topography (grooves with a height of 300 nm and width of 2 µm were spaced 9 µm apart). Interestingly, cells did not change their direction immediately after the surface transition. However, cell alignment was gradually lost with time, and finally cells realigned parallel to the permanent grooves that emerged. The addition of a cytoskeletal inhibitor prevented realignment. These results clearly indicate that cells can sense dynamic changes in the surrounding environments and spontaneously adapt to a new environment by remodeling their cytoskeleton. These findings will serve as the basis for new development of spatiotemporal tunable materials to direct cell fate.


Assuntos
Técnicas de Cultura de Células/métodos , Fenômenos Fisiológicos Celulares/fisiologia , Nanoestruturas/química , Nanotecnologia/métodos , Poliésteres/química , Animais , Camundongos , Células NIH 3T3 , Molhabilidade
10.
Adv Mater ; 24(2): 273-8, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21954058

RESUMO

Shape-memory surfaces with on-demand, tunable nanopatterns are developed to observe time dependent changes in cell alignment using temperature-responsive poly(ϵ-caprolactone) (PCL) films. Temporary grooved nanopatterns are easily programmed on the films and triggered to transition quickly to permanent surface patterns by the application of body heat. A time-dependent cytoskeleton remodeling is also observed under biologically relevant conditions.


Assuntos
Nanoestruturas/química , Animais , Linhagem Celular , Citoesqueleto , Camundongos , Microscopia de Força Atômica , Poliésteres/química , Propriedades de Superfície , Fatores de Tempo , Temperatura de Transição
11.
Sci Technol Adv Mater ; 13(6): 064202, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877529

RESUMO

We demonstrate a timed explosive drug release from smart pH-responsive hydrogels by utilizing a phototriggered spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA) was integrated into poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. o-NBA-hydrogels demonstrated the rapid release of protons upon UV irradiation, allowing the pH inside the gel to decrease to below the pKa value of P(NIPAAm-co-CIPAAm). The generated protons diffused gradually toward the non-illuminated area, and the diffusion kinetics could be controlled by adjusting the UV irradiation time and intensity. After irradiation, we observed the enhanced release of entrapped L-3,4-dihydroxyphenylalanine (DOPA) from the gels, which was driven by the dissociation of DOPA from CIPAAm. Local UV irradiation also triggered the release of DOPA from the non-illuminated area in the gel via the diffusion of protons. Conventional systems can activate only the illuminated region, and their response is discontinuous when the light is turned off. The ability of the proposed pH-jump system to permit gradual activation via proton diffusion may be beneficial for the design of predictive and programmable devices for drug delivery.

12.
Sci Technol Adv Mater ; 13(6): 064206, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877533

RESUMO

Temperature-responsive glycopolymer brushes were designed to investigate the effects of grafting architectures of the copolymers on the selective adhesion and collection of hypatocytes. Homo, random and block sequences of N-isopropylacrylamide and 2-lactobionamidoethyl methacrylate were grafted on glass substrates via surface-initiated atom transfer radical polymerization. The galactose/lactose-specific lectin RCA120 and HepG2 cells were used to test for specific recognition of the polymer brushes containing galactose residues over the lower critical solution temperatures (LCSTs). RCA120 showed a specific binding to the brush surfaces at 37 °C. These brush surfaces also facilitated the adhesion of HepG2 cells at 37 °C under nonserum conditions, whereas no adhesion was observed for NIH-3T3 fibroblasts. When the temperature was decreased to 25 °C, almost all the HepG2 cells detached from the block copolymer brush, whereas the random copolymer brush did not release the cells. The difference in releasing kinetics of cells from the surfaces with different grafting architectures can be explained by the correlated effects of significant changes in LCST, mobility, hydrophilicity and mechanical properties of the grafted polymer chains. These findings are important for designing 'on-off' cell capture/release substrates for various biomedical applications such as selective cell separation.

13.
Colloids Surf B Biointerfaces ; 99: 95-101, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22143027

RESUMO

This paper describes the effects of graft architecture of poly(N-isopropylacrylamide) (PIPAAm) brush surfaces on thermoresponsive aqueous wettability changes and the temperature-dependent hydrophobic interaction of steroids in silica capillaries (I.D.: 50 µm). PIPAAm brushes were grafted onto glass substrates by surface-initiated atom transfer radical polymerization (ATRP) that is one of the living radical polymerization techniques. Increases in the graft density and chain length of PIPAAm brushes increased the hydration of polymer brushes, resulting in the increased hydrophilic properties of the surface below the transition temperature of PIPAAm at 32 °C. More hydrophobic surface properties were also observed on surfaces modified with the block copolymers of IPAAm and n-butyl methacrylate (BMA) than that with IPAAm homopolymer-grafted surfaces over the transition temperature. Using PBMA-b-PIPAAm-grafted silica capillaries, the baseline separation of steroids was successfully achieved by only changing temperature. The incorporation of hydrophobic PBMA chains in grafted PIPAAm enhanced the hydrophobic interaction with testosterone above the transition temperature. The surface modification of hydrophobicity-enhanced thermoresponsive polymers is a promising method for the preparation of thermoresponsive biointerfaces that can effectively modulated their biomolecule and cell adsorption with the wide dynamic range of hydrophilic/hydrophobic property change across the transition temperature.


Assuntos
Acrilamidas/química , Eletrocromatografia Capilar/métodos , Metacrilatos/química , Polímeros/química , Resinas Acrílicas , Adsorção , Cortisona/química , Vidro/química , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Polimerização , Dióxido de Silício/química , Relação Estrutura-Atividade , Propriedades de Superfície , Temperatura , Testosterona/química , Água , Molhabilidade
14.
Colloids Surf B Biointerfaces ; 99: 53-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22019453

RESUMO

We proposed here a 'smart' control of an interface movement of proton diffusion in temperature- and pH-responsive hydrogels using a light-induced spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (NBA) was integrated into poly(N-isopropylacrylamide-o-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. NBA-integrated hydrogels demonstrated quick release of proton upon UV irradiation, allowing the pH inside the gel to decrease below the pK(a) of P(NIPAAm-co-CIPAAm) within a minute. The NBA-integrated gel was shown to shrink rapidly upon UV irradiation without polymer "skin layer" formation due to a uniform decrease of pH inside the gel. Spatial control of gel shrinking was also created by irradiating UV light to a limited region of the gel through a photomask. The interface of proton diffusion ("active interface") gradually moved toward non-illuminated area. The apparent position of "active interface", however, did not change remarkably above the LCST, while protons continuously diffused outward direction. This is because the "active interface" also moved inward direction as gel shrank above the LCST. As a result, slow movement of the apparent interface was observed. The NBA-integrated gel was also successfully employed for the controlled release of an entrapped dextran in a light controlled manner. This system is highly promising as smart platforms for triggered and programmed transportation of drugs.


Assuntos
Acrilamidas/química , Benzaldeídos/química , Preparações de Ação Retardada/síntese química , Hidrogéis/síntese química , Prótons , Dextranos/química , Difusão , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Processos Fotoquímicos , Soluções , Propriedades de Superfície , Temperatura , Raios Ultravioleta
15.
Biomaterials ; 32(10): 2459-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21251708

RESUMO

Various micro cell culture systems have recently been developed. However, it is extremely difficult to recover cultured cells from a microchannel because the upper and lower substrates of a microchip are permanently combined. Therefore, we developed a cell culture and recovery system that uses a separable microchip with reversible combining that allows separation between closed and open channels. To realize this system, two problems related to microfluidic control-prevention of leakage and non-invasive recovery of cultured cells from the substrate-must be overcome. In the present study, we used surface chemistry modification to solve both problems. First, octadecyltrimethoxysilane (ODTMS) was utilized to control the Laplace pressure at the liquid/vapor phase interface, such that it was directed toward the microchannels, which suppressed leakage from the slight gap between two substrates. Second, a thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAAm) was used to coat the surface of the ODTMS-modified microchannel by UV-mediated photopolymerization. PNIPAAm substrates are well known for controlled cell adhesion/detachment by alteration of temperature. Finally, the ODTMS- and PNIPAAm-modified separable microchips were subjected to patterning, and human arterial endothelial cells (HAECs) were cultured in the resulting microchannels with no leakage. After 96 h of the culture, the HAECs were detached from the microchips by decreasing the temperature and were then recovered from the microchannels. This study is the first to demonstrate the recovery of living cells cultured in a microchannel, and may be useful as a fundamental technique for vascular tissue engineering.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células Endoteliais/citologia , Técnicas Analíticas Microfluídicas/métodos , Acrilamidas/química , Resinas Acrílicas , Artérias/citologia , Adesão Celular , Células Cultivadas , Fluorescência , Vidro/química , Humanos , Compostos de Organossilício/química , Polímeros/química , Pressão , Propriedades de Superfície , Água
16.
Langmuir ; 26(23): 17781-4, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21038851

RESUMO

In this study, stereocontrolled poly(N-isopropylacrylamide) (PIPAAm) brushes were grafted from surfaces by atom transfer radical polymerization (ATRP) in the presence of a Lewis acid, and the effect of PIPAAm brush tacticity on the thermoresponsive wettabiliy was investigated. PIPAAm grafted by ATRP in the presence of Y(OTf)(3) showed high isotacticity, while the control brush polymerized in the absence of Y(OTf)(3) was clearly atactic. The isotacticity and molecular weight of PIPAAm brushes were controlled by polymerization conditions. The wettability of isotactic PIPAAm-grafted surfaces decreased slightly below 10 °C, although the phase transition temperature of atactic surface was 30 °C, and the bulk isotactic polymer was water-insoluble between 5 and 45 °C.

17.
J Phys Chem B ; 113(51): 16314-22, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19954152

RESUMO

The phase equilibrium property and structural and dynamical properties of pig cornea were studied by macroscopic observation of swelling behavior, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) under various conditions. It was found that the corneal gel collapses into a compact state isotropically or anisotropically depending on the external conditions. The corneal gel collapses uniformly into a compact state at a temperature above 55 degrees C because of the denaturation of collagen, whereas it collapses along an axis parallel to the optic axis with increasing NaCl concentration. Anisotropic deswelling was also observed during desiccation. SAXS measurements revealed that the periodicity of the collagen fiber of the cornea does not change even at higher NaCl concentration, which indicates that hydration and dehydration resulting from changes in salt concentration simply cause swelling and deswelling of the glycosaminoglycan (GAG), which is located between the regular two-dimensional lattices of collagen fibers, which obliges the change in thickness. From observations of the dynamics of light scattered by the corneal gel, intensity autocorrelation functions that revealed two independent diffusion coefficients were obtained. Divergent behavior in the measured total scattered light intensities and diffusion coefficients with varying temperature was observed. That is, a slowing of the dynamic modes accompanied by increased "static" scattered intensities was observed. This is indicative of the occurrence of a phase transition as a function of temperature.


Assuntos
Córnea/química , Animais , Anisotropia , Géis/química , Espalhamento a Baixo Ângulo , Suínos , Temperatura
18.
Lab Chip ; 9(11): 1517-23, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19458857

RESUMO

That focused arrays, even with a small set of ligands, provide more data than single point experiments is well established in the DNA microarray research field, but microarray technology has yet to be transferred to fused silica microchips. Fused silica microchips have several attractive features such as stability to pressure, solvents, acids and bases, and can be fabricated with minute dimensions, making them good candidates for nanofluidic research. However, due to harsh bonding conditions, DNA ligands must be immobilized after fabrication, thus preventing standard microarray spotting techniques from being used. In this paper, we provide tools for serial DNA immobilization in fused silica microchips using UV. We report the synthesis of a new UV-linker which was used to covalently couple functional DNA oligos to the inside of channels in fused silica microchips. With some simple modifications to our mask aligner, we were able to transfer OHP mask patterns, which allows the creation of basically any pattern in the channels. The functionality of the oligos was measured through the binding of fluorophore-labeled complementary target oligos. We examined parameters influencing DNA immobilization, and carry-over between spots after consecutive immobilizations inside the same channel. We also report the first successful multiple immobilizations of functional DNA oligos inside single channels of extended nanospace depth (460 nm).


Assuntos
Nanotecnologia/métodos , Oligodesoxirribonucleotídeos/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Benzofenonas/química , Dióxido de Silício/química , Raios Ultravioleta
19.
Biomaterials ; 30(11): 2095-101, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19157534

RESUMO

A simple process for nano-patterned cell culture substrates by direct graft-polymerization has been developed using an electron beam (EB) lithography system requiring no photo-masks or EB-sensitive resists. The compound N-isopropylacrylamide (IPAAm) was locally polymerized and grafted directly by EB lithographic exposure onto hydrophilic polyacrylamide (PAAm)-grafted glass surfaces. The size of the surface grafted polymers was controlled by varying the area of EB dose, and a minimal stripe pattern with a 200 nm line-width could be fabricated onto the surface. On the stripe-patterned surfaces, above the lower critical solution temperature (LCST), the cells initially adhered and spread with an orientation along the pattern direction. The magnitude of the spreading angle and elongation of adhered cells depended on the pattern intervals of the grafted PIPAAm. When culture temperature was lower than the LCST, cultured cells detached from the surfaces with strong shrinkage along the pattern direction, and sometimes folded and became parallel with the stripe pattern. This patterned cell recovery technique may be useful for the construction of muscle cell sheets with efficient shrinkage/relaxation in a specific direction and spheroidal 3D cell structures, with application to tissue engineering and microfluidic cellular devices.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Animais , Bovinos , Linhagem Celular , Elétrons , Camundongos , Temperatura , Engenharia Tecidual/métodos
20.
Langmuir ; 22(1): 425-30, 2006 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16378455

RESUMO

Poly(N-isopropylacrylamide) (PIPAAm) of controlled molecular weight was densely grafted onto glass capillary lumenal surfaces using surface-initiated atom transfer radical polymerization (ATRP). Temperature-dependent changes of these thermoresponsive brush surfaces with hydrophobic steroids were investigated by exploiting thermoresponsive aqueous wettability changes of the polymer-modified surfaces in microfluidic systems. IPAAm was polymerized on ATRP initiator-immobilized glass surfaces using CuCl/CuCl(2)/tris(dimethylaminoethyl)amine (Me(6)TREN) as an ATRP catalyst in water at 25 degrees C. PIPAAm graft layer thickness and its homogeneity on glass surfaces are controlled by changing ATRP reaction time. Aqueous wettability changes of PIPAAm-grafted surfaces responses drastically changed to both grafted polymer layer thickness and temperature, especially at lower temperatures. Temperature-responsive surface properties of these PIPAAm brushes within capillary inner wall surfaces were then investigated using capillary chromatography. Effective interaction of hydrophobic steroids with dehydrated, hydrophobized PIPAAm-grafted capillary surfaces was observed above 30 degrees C without any column packing materials. Steroid elution behavior from PIPAAm-grafted capillaries contrasted sharply with that from PIPAAm hydrogel-grafted porous monolithic silica capillaries prepared by electron beam (EB) irradiation wherein significant peak broadening was observed at high-temperature regardless of sample hydrophobicity factors (log P values), indicating multistep separation modes in coated monolithic silica capillaries. In conclusion, thermoresponsive polymer-grafted capillary inner wall surfaces prepared by ATRP exhibit useful temperature-dependent surface property alterations effective to regulate interactions with biomolecules without requirements for separation bed packing materials within the capillary lumen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...