Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(33): 21993-22001, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555234

RESUMO

The photoluminescence properties of organic-inorganic pyridinium lead bromide [(pyH)PbBr3] and iodide [(pyH)PbI3] compounds were investigated as a function of temperature. The inorganic substructure consists of face-sharing chains of PbX6 octahedra. Diffuse reflectance spectra of the compounds show low energy absorption features consistent with charge transfer transitions from the PbX3 chains to the pyridinium cations. Both compounds display extremely weak luminescence at room temperature that becomes strongly enhanced upon cooling to 77 K. Broad, featureless low energy emission (λem > 600 nm) in both compounds have large Stokes shifts [1.1 eV for (pyH)PbBr3 and 0.46 eV for (pyH)PbI3] and are assigned to transitions from self-trapped excitons on the inorganic chains whereas emission at higher energy in (pyH)PbBr3 (λem = 450 nm) is assigned to luminescence from a free exciton state. Analysis of data from temperature-dependent luminescence intensity measurements gives activation energies (Ea) for non-radiative decay of the self-trapped excitons in (pyH)PbBr3 and (pyH)PbI3, (Ea = 0.077 eV and 0.103 eV, respectively) and for the free exciton in (pyH)PbBr3 (Ea = 0.010 eV). Analysis of temperature dependent luminescence lifetime data indicates another non-radiative decay process in (pyH)PbI3 at higher temperatures (Ea = 0.17 eV). A large increase in the luminescence lifetime of (pyH)PbI3 below 80 K is consistent with thermalization between triplet sublevels. Analysis of the luminescence power dependence for (pyH)PbI3 shows superlinear response suggestive of quenching by static traps.

2.
Front Chem ; 8: 401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457877

RESUMO

The structural, photophysical and electrochemical properties of three luminescent 2-coordinate coinage metal (i.e., M = Cu, Ag, Au) complexes bearing a sterically bulky benzimidazolyl carbene, 1,3-bis(2,6-diisopropylphenyl)-1-H-benzo[d]imidazol-2-ylidene (BZI), and carbazolide (Cz) as the anionic ligand were investigated. All the complexes emit in the deep blue region (~430 nm) with relatively narrow spectra (full width at half maximum = 44 nm, 2,300 cm-1) characterized by vibronic fine structure in nonpolar media (methylcyclohexane at room temperature), and with high photoluminescence quantum yields (ΦPL > 80%) and radiative rate constants (k r ~ 7.8 × 105 s-1). The luminescence is solvatochromic, undergoing a red-shift in a polar solvent (CH2Cl2) at room temperature that are accompanied by a decrease in quantum yields (ΦPL < 23%) and radiative rate constants (k r < 4.0 × 104 s-1), whereas the non-radiative rate constants remain nearly constant (k nr ~ 1.0 × 105 s-1). The radiative rate is controlled via thermally assisted delayed fluorescence (TADF) and temperature-dependent luminescence studies of the gold complex (Au BZI) in methylcyclohexane solution reveal an energy difference between the lowest singlet and triplet excited states of 920 cm-1. An organic light-emitting diode (OLED) fabricated using Au BZI as a luminescent dopant has an external quantum efficiency of 12% and narrow, deep-blue emission (CIE = 0.16, 0.06).

3.
Inorg Chem ; 58(18): 12348-12357, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31522509

RESUMO

Narrow, deep blue emitters are highly desired in the field of organic light emitting diodes for high quality full color display and solid-state lighting applications. PtNON is reported as a deep blue emitting phosphor but is limited by its broad emission spectrum, making it unsuitable for high quality full color display applications. In this work, we report a strategy to fine-tune the color and the emission line shape of PtNON derivatives by incorporating electron donating (methyl or methoxy) or withdrawing (trifluoromethyl) substituent groups at the positions para to the nitrogen of the pyridines in PtNON. These substitutions resulted in destabilization or stabilization of the charge transfer state (CT) relative to the ligand centered (LC) state, resulting in complexes with narrow or broad emission spectra in various media. PtNON-OMe emits predominantly from the LC state, giving a narrow emission spectrum with fwhm = 48 nm in any media. PtNON-Me emits largely from the LC state in nonpolar media (fwhm = 54 nm) and predominantly from the CT state in polar media (fwhm = 83 nm). Last, PtNON-CF3 emits solely from the CT state in any media, giving it a broad emission spectrum (fwhm = 98 nm). The photoluminescence quantum yields of PtNON-OMe, PtNON-Me, and PtNON-CF3 in 1% doped PMMA films are 89, 95 and 20% with emission lifetimes of 27.1, 7.17, and 0.96 µs, respectively.

4.
Org Biomol Chem ; 13(42): 10496-504, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26332671

RESUMO

Three new Zn(ii)-, oligo- and poly(2,5-thienylene)-linked porphyrins, bearing multiple triethylene glycol (TEG) groups, on all meso aryl positions were synthesized via Stille and Suzuki coupling reactions and their photophysical properties as well as singlet oxygen generation efficiencies have been investigated to elucidate the possibility of their use as a photosensitizer for photodynamic therapy (PDT) and photodynamic inactivation of bacteria.


Assuntos
Fármacos Fotossensibilizantes/síntese química , Polímeros/química , Porfirinas/química , Oxigênio Singlete/química , Complexos de Coordenação/química , Etilenos/química , Glicóis/química , Estrutura Molecular , Fármacos Fotossensibilizantes/química , Zinco/química
5.
Org Biomol Chem ; 13(2): 330-47, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25408267

RESUMO

Cucurbituril (CB) is a unique macrocycle with a rigid symmetrical structure, which is composed of two identical hydrophilic portals decorated with partially negatively charged carbonyl groups and a hydrophobic cavity. A number of different nanostructured materials, including nanoparticles, nanocomposites, vesicles and rods, have been prepared by taking advantage of the varying cavity size of the CB homologues, their ability to accommodate more than one guest in their cavities, their rigid symmetrical structures, as well as the water solubility of CB7. These nanostructures could find a wide range of potential applications in the areas of self-healing materials, nanomedicine, plasmonics, and nanocatalysis. Here, we review the recent progresses in the synthesis, properties and application of CB-based supramolecular engineered nanostructures, which are either constructed through CB-assisted self-assembly or from post-functionalized-CB homologues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...