Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(48): 34200-34209, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020019

RESUMO

Sodium-ion (Na-ion) batteries are currently being investigated as an attractive substitute for lithium-ion (Li-ion) batteries in large energy storage systems because of the more abundant and less expensive supply of Na than Li. However, the reversible capacity of Na-ions is limited because Na possesses a large ionic radius and has a higher standard electrode potential than that of Li, making it challenging to obtain electrode materials that are capable of storing large quantities of Na-ions. This study investigates the potential of CoFe2O4 synthesised via the molten salt method as an anode for Na-ion batteries. The obtained phase structure, morphology and charge and discharge properties of CoFe2O4 are thoroughly assessed. The synthesised CoFe2O4 has an octahedron morphology, with a particle size in the range of 1.1-3.6 µm and a crystallite size of ∼26 nm. Moreover, the CoFe2O4 (M800) electrodes can deliver a high discharge capacity of 839 mA h g-1 in the first cycle at a current density of 0.1 A g-1, reasonable cyclability of 98 mA h g-1 after 100 cycles and coulombic efficiency of ∼99%. The improved electrochemical performances of CoFe2O4 can be due to Na-ion-pathway shortening, wherein the homogeneity and small size of CoFe2O4 particles may enhance the Na-ion transportation. Therefore, this simple synthetic approach using molten salt favours the Na-ion diffusion and electron transport to a great extent and maximises the utilisation of CoFe2O4 as a potential anode material for Na-ion batteries.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839100

RESUMO

Currently, efforts to address the energy needs of large-scale power applications have expedited the development of sodium-ion (Na-ion) batteries. Transition-metal oxides, including Mn2O3, are promising for low-cost, eco-friendly energy storage/conversion. Due to its high theoretical capacity, Mn2O3 is worth exploring as an anode material for Na-ion batteries; however, its actual application is constrained by low electrical conductivity and capacity fading. Herein, we attempt to overcome the problems related to Mn2O3 with heteroatom-doped reduced graphene oxide (rGO) aerogels synthesised via the hydrothermal method with a subsequent freeze-drying process. The cubic Mn2O3 particles with an average size of 0.5-1.5 µm are distributed to both sides of heteroatom-doped rGO aerogels layers. Results indicate that heteroatom-doped rGO aerogels may serve as an efficient ion transport channel for electrolyte ion transport in Mn2O3. After 100 cycles, the electrodes retained their capacities of 242, 325, and 277 mAh g-1, for Mn2O3/rGO, Mn2O3/nitrogen-rGO, and Mn2O3/nitrogen, sulphur-rGO aerogels, respectively. Doping Mn2O3 with heteroatom-doped rGO aerogels increased its electrical conductivity and buffered volume change during charge/discharge, resulting in high capacity and stable cycling performance. The synergistic effects of heteroatom doping and the three-dimensional porous structure network of rGO aerogels are responsible for their excellent electrochemical performances.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296759

RESUMO

Owing to their high theoretical capacity, transition-metal oxides have received a considerable amount of attention as potential anode materials in sodium-ion (Na-ion) batteries. Among them, Mn3O4 has gained interest due to the low cost of raw materials and the environmental compatibility. However, during the insertion/de-insertion process, Mn3O4 suffers from particle aggregation, poor conductivity, and low-rate capability, which, in turn, limits its practical application. To overcome these obstacles, we have successfully prepared Mn3O4 nanoparticles distributed on the nitrogen (N)-doped and nitrogen, sulphur (N,S)-doped reduced graphene oxide (rGO) aerogels, respectively. The highly crystalline Mn3O4 nanoparticles, with an average size of 15-20 nm, are homogeneously dispersed on both sides of the N-rGO and N,S-rGO aerogels. The results indicate that the N-rGO and N,S-rGO aerogels could provide an efficient ion transport channel for electrolyte ion stability in the Mn3O4 electrode. The Mn3O4/N- and Mn3O4/N,S-doped rGO aerogels exhibit outstanding electrochemical performances, with a reversible specific capacity of 374 and 281 mAh g-1, respectively, after 100 cycles, with Coulombic efficiency of almost 99%. The interconnected structure of heteroatom-doped rGO with Mn3O4 nanoparticles is believed to facilitate fast ion diffusion and electron transfer by lowering the energy barrier, which favours the complete utilisation of the active material and improvement of the structure's stability.

4.
ACS Omega ; 5(45): 29158-29167, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225147

RESUMO

Mn3O4 is considered to be a promising anode material for sodium-ion batteries (SIBs) because of its low cost, high capacity, and enhanced safety. However, the inferior cyclic stability of the Mn3O4 anode is a major challenge for the development of SIBs. In this study, a one-step solvothermal method was established to produce nanostructured Mn3O4 with an average particle size of 21 nm and a crystal size of 11 nm. The Mn3O4 obtained exhibits a unique architecture, consisting of small clusters composed of numerous tiny nanoparticles. The Mn3O4 material could deliver high capacity (522 mAh g-1 at 100 mA g-1), reasonable cyclic stability (158 mAh g-1 after 200 cycles), and good rate capability (73 mAh g-1 at 1000 mA g-1) even without further carbon coating, which is a common exercise for most anode materials so far. The sodium insertion/extraction was also confirmed by a reversible conversion reaction by adopting an ex situ X-ray diffraction technique. This simple, cost-effective, and environmentally friendly synthesis technique with good electrochemical performance shows that the Mn3O4 nanoparticle anode has the potential for SIB development.

5.
Sci Rep ; 10(1): 9207, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513958

RESUMO

Currently, the development of the sodium-ion (Na-ion) batteries as an alternative to lithium-ion batteries has been accelerated to meet the energy demands of large-scale power applications. The difficulty of obtaining suitable electrode materials capable of storing large amount of Na-ion arises from the large radius of Na-ion that restricts its reversible capacity. Herein, Mn2O3 powders are synthesised through the thermal conversion of MnCO3 and reported for the first time as an anode for Na-ion batteries. The phase, morphology and charge/discharge characteristics of Mn2O3 obtained are evaluated systematically. The cubic-like Mn2O3 with particle sizes approximately 1.0-1.5 µm coupled with the formation of Mn2O3 sub-units on its surface create a positive effect on the insertion/deinsertion of Na-ion. Mn2O3 delivers a first discharge capacity of 544 mAh g-1 and retains its capacity by 85% after 200 cycles at 100 mA g-1, demonstrating the excellent cyclability of the Mn2O3 electrode. Therefore, this study provides a significant contribution towards exploring the potential of Mn2O3 as a promising anode in the development of Na-ion batteries.

6.
RSC Adv ; 8(28): 15667-15674, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35559118

RESUMO

In this study, the effect of nanolayer-like-shaped MgFe2O4 that is synthesised via a simple hydrothermal method on the performance of MgH2 for hydrogen storage is studied. MgH2 + 10 wt% MgFe2O4 is prepared by using the ball milling method. The MgFe2O4-doped MgH2 sample started to release H2 at approximately 250 °C, 90 °C and 170 °C lower than the milled and pure MgH2 respectively. At 320 °C, the isothermal desorption kinetic study has shown that the doped sample has desorbed approximately 4.8 wt% H2 in 10 min while the milled MgH2 desorbed less than 1.0 wt% H2. For isothermal absorption kinetics, the doped sample can absorb approximately 5.5 wt% H2 in 10 min at 200 °C. Meanwhile, the undoped sample absorbs only 4.0 wt% H2 in the same condition. The activation energy of 10 wt% MgFe2O4-doped MgH2 composite is 99.9 kJ mol-1, which shows a reduction of 33.1 kJ mol-1 compared to the milled MgH2 (133.0 kJ mol-1). X-ray diffraction spectra display the formation of new species which are Fe and MgO after dehydrogenation, and these new species are believed to act as the real catalyst that plays a crucial role in improving the sorption performance of the MgFe2O4-doped MgH2 system by providing a synergetic catalytic effect.

7.
Sci Rep ; 6: 32082, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553290

RESUMO

In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

8.
Chemistry ; 17(2): 661-7, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21207587

RESUMO

Fe(3)O(4)-graphene composites with three-dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field-emission and transmission electron microscopy results, the Fe(3)O(4) nanoparticles, around 3-15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li-cycling properties of Fe(3)O(4)-graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe(3)O(4)-graphene nanocomposite with a graphene content of 38.0 wt % exhibits a stable capacity of about 650 mAh g(-1) with no noticeable fading for up to 100 cycles in the voltage range of 0.0-3.0 V. The superior performance of Fe(3)O(4)-graphene is clearly established by comparison of the results with those from bare Fe(3)O(4). The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe(3)O(4).


Assuntos
Eletroquímica/instrumentação , Óxido Ferroso-Férrico/química , Lítio/química , Nanopartículas/química , Fontes de Energia Elétrica , Eletroquímica/métodos , Eletrodos , Óxido Ferroso-Férrico/síntese química , Grafite/síntese química , Grafite/química , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...