Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 28(49): 495705, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29083313

RESUMO

We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

2.
J Phys Condens Matter ; 25(15): 155303, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23528822

RESUMO

We produced graphene-based field-effect transistors by contacting mono- and bi-layer graphene by sputtering Ni or Ti as metal electrodes. We performed electrical characterization of the devices by measuring their transfer and output characteristics. We clearly observed the presence of a double-dip feature in the conductance curve for Ni-contacted transistors, and we explain it in terms of charge transfer and graphene doping under the metal contacts. We also studied the contact resistance between the graphene and the metal electrodes with larger values of ~30 kΩµm(2) recorded for Ti contacts. Importantly, we prove that the contact resistance is modulated by the back-gate voltage.

3.
Nanotechnology ; 19(39): 395701, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21832602

RESUMO

The electron field emission characteristics of individual multiwalled carbon nanotubes were investigated by a piezoelectric nanomanipulation system operating inside a scanning electron microscopy chamber. The experimental set-up ensures a precise evaluation of the geometric parameters (multiwalled carbon nanotube length and diameter and anode-cathode separation) of the field emission system. For several multiwalled carbon nanotubes, reproducible and quite stable emission current behaviour was obtained, with a dependence on the applied voltage well described by a series resistance modified Fowler-Nordheim model. A turn-on field of ∼30 V µm(-1) and a field enhancement factor of around 100 at a cathode-anode distance of the order of 1 µm were evaluated. Finally, the effect of selective electron beam irradiation on the nanotube field emission capabilities was extensively investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...