Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(3): 1735-1744, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35001621

RESUMO

The orthorhombic phase of KNbO3 perovskite has been applied for nitrogen (N2) photoreduction to ammonia (NH3). However, this material suffers from a low surface area and low ammonia production efficiency under UV light irradiation. To eliminate these barriers, we used a metal-organic framework (MOF), named as TMU-5 ([Zn(OBA)(BPDH)0.5]n·1.5DMF, where H2OBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene), for the synthesis of the KNbO3@TMU-5 hybrid material. KNbO3@TMU-5 achieved a NH3 production rate of 39.9 µmol·L-1·h-1·g-1 upon UV light irradiation, as compared to 20.5 µmol·L-1·h-1·g-1 recorded for KNbO3 under similar experimental conditions. Using different characterization techniques especially gas adsorption, cyclic voltammetry, X-ray photoelectron spectroscopy, photocurrent measurements, and Fourier transform infrared spectroscopy, it has been found that the higher photoactivity of KNbO3@TMU-5 in ammonia production is due to its higher surface area, higher electron-hole separation efficiency, and higher density of negative charges on Nb sites. This work shows that hybridization of conventional semiconductors (SCs) with photoactive MOFs can improve the photoactivity of the SC@MOF hybrid material in different reactions, especially kinetically complex reactions like photoconversion of nitrogen to ammonia.

2.
J Colloid Interface Sci ; 613: 384-395, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35042036

RESUMO

This work describes the preparation of ternary bismuth ferrite oxide nanoparticles (Bi2Fe4O9 NPs) with an enzyme mimetic activity for dopamine (DA) qualitative and quantitative detection. Bi2Fe4O9 NPs were prepared using a facile, low cost, and one-pot hydrothermal treatment. The chemical composition, morphology, and optical properties of Bi2Fe4O9 nanozyme were characterized using different techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), dynamic light scattering (DLS), field-emission scanning electron microscopy (FESEM) imaging, FESEM-energy dispersive X-ray spectroscopy (EDS), UV-vis absorption, and fluorescence emission spectroscopy. Bi2Fe4O9 NPs were utilized to catalyze the oxidation of a typical chromogenic peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), to form the blue-colored oxidized product (oxTMB), in the presence of hydrogen peroxide (H2O2). All reactions occurred in acetate buffer solution (pH 3.5) to generate hydroxyl radicals (•OH) and the kinetics were followed by UV-vis absorbance at 654 nm. The steady-state kinetic parameters were obtained from the Michaelis-Menten equation and exhibited a good catalytic efficiency of Bi2Fe4O9 NPs as enzyme mimetics. Michaelis-Menten constant (Km) values were estimated as 0.07 and 0.73 mM for TMB and H2O2, respectively. The presented method is efficient, rapid, cost-effective, and sensitive for the colorimetric detection of dopamine with a linear range (LR) from 0.15 to 50 µM and a detection limit (LOD) of 51 nM. The proposed colorimetric sensor was successfully applied for the detection of different concentrations of dopamine in spiked fetal bovine serum (FBS) and horse serum (HS) samples. It is anticipated that Bi2Fe4O9 nanozyme holds great potential in biomedical analysis and diagnostic applications of dopamine-related diseases.


Assuntos
Colorimetria , Dopamina/análise , Nanopartículas , Bismuto , Compostos Férricos , Peróxido de Hidrogênio , Peroxidases , Soroalbumina Bovina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...