Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 336: 139199, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315861

RESUMO

Nanoparticles (NPs) are released and dispersed in the environment because of increased manufacturing and use of nano products. NPs disturb the growth of plants depending upon types, exposure duration and plant species. The purpose of this research was to explore the role of gibberellic acid (GA) exposure through foliar route on wheat growth under alone or combined soil application of cerium oxide (CeO2), zinc oxide (ZnO), and titanium dioxide (TiO2) NPs. GA was foliar-applied (200 mg/L) on the wheat plants treated with individual and in all possible combination of the selected NPs. Explorations have revealed that the combination of NPs and GA worked well to enhance the plant growth and selected nutrient status than NPs alone. Furthermore, GA decreased the boosted antioxidant enzyme activities under the combination and individual NPs compared to the alone NPs treated plants, lowered the oxidative stress in wheat plants which provided the additional proof that GA decreased oxidative damage in plants. Combined NPs showed differential effects than individual NPs application irrespective of GA exposure which varied with NPs combination and studied parameters of plants. GA + NPs differentially affected the potassium, phosphorus, iron and manganese concentrations in wheat tissues than NPs alone treatments. Overall, GA can be applied when there is excess of NPs (either alone or in combination) in the growth medium to ensure the growth of crops. However, further studied are needed with other plant species and alone or combined use of different NPs under GA treatment before any final recommendation.


Assuntos
Cério , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Zinco/toxicidade , Zinco/análise , Triticum , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Antioxidantes/farmacologia , Cério/toxicidade , Poluentes do Solo/análise
2.
Environ Geochem Health ; 44(1): 257-272, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33907913

RESUMO

Salinity and lead (Pb) contamination of soil are important environmental issues. A hydroponics experiment was performed to unravel the effects of salinity on modulation of Pb tolerance and phytoremediation potential of quinoa. Four-week-old plants of quinoa genotype "Puno" were treated with different concentrations of NaCl (0, 150 and 300 mM), Pb (0, 250 and 500 µM) and their combinations. It was noticed that plant biomass, chlorophyll contents and stomatal conductance of quinoa were slightly affected at 150 mM NaCl or 250 µM Pb. However, the higher concentrations of NaCl (300 mM) and Pb (500 µM) caused significant decline in these attributes. The accumulation of Na in quinoa increased under the combined application of salt with highest level of Pb. The uptake of K was not affected at the lower levels of either salinity or Pb, but decreased significantly at their highest levels. The combination of salinity and Pb increased H2O2 contents and caused lipid peroxidation that was mitigated by the activation of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase). The activities of these enzymes increased by 4-, 3.75-, 5.4- and 2-fold, respectively, in the combined application of 500 µM Pb and 300 mM NaCl with respect to control. A multivariate analysis indicated that Pb tolerance potential of quinoa under combined application of NaCl and Pb was higher at 150 than 300 mM NaCl. The bioconcentration factor and translocation factor for Pb remained less than one either in the absence or presence of salinity. Lead accumulation and tolerance potential indicated that quinoa genotype "Puno" is suitable for phytostabilization of Pb under saline conditions.


Assuntos
Chenopodium quinoa , Poluentes do Solo , Biodegradação Ambiental , Peróxido de Hidrogênio , Chumbo/toxicidade , Salinidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Ecotoxicol Environ Saf ; 221: 112436, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171689

RESUMO

Nanoparticles (NPs), as a novel source of industrial materials, have been extensively used in recent years which ultimately ends up in soils and may cause toxic effects on plants. Gibberellic acid (GA), phytohormone, has ability to minimize abiotic stresses in plants. The role of GA in minimizing titanium dioxide (TiO2) NPs stress in plants is still unknown. In current study, soil was spiked with TiO2 NPs (0, 100, 200, 400, 600 mg/kg) while GA was foliar-sprayed at different concentrations during wheat growth. The findings revealed that TiO2 NPs increased the growth, chlorophyll contents, and nutrient (P, K, Fe, Mn) concentrations in tissues till 400 mg/kg and then decrease was observed at 600 mg/kg level of NPs whereas the values of these parameters were higher compared to control irrespective of NPs levels. The NPs enhanced the antioxidant activities (SOD, POD, CAT, APX) and reduced the oxidative stress (EL, H2O2, MDA) in leaves over the control. Foliar GA further improved the growth, yield, nutrients and antioxidant activities while minimized the oxidative stress compared to respective sole NPs- treatments. The interactive effects of NPs and GA were dose dependent. The results proved that studied doses of TiO2 NPs were not toxic to wheat plants except the highest level (600 mg/kg) used and GA positively affected the yield of wheat under TiO2 NPs application. The GA can be used to improve crop growth in the presence of NPs which, however, needs further investigation at higher doses of TiO2 NPs in various crops.


Assuntos
Giberelinas/farmacologia , Nanopartículas/toxicidade , Titânio/toxicidade , Triticum/efeitos dos fármacos , Antioxidantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Minerais/metabolismo , Nutrientes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Poluentes do Solo/toxicidade
4.
Environ Sci Pollut Res Int ; 27(27): 33809-33820, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535824

RESUMO

Recently nanoparticles (NPs) are ubiquitous in the environment because they have unique characteristics which are the reason of their wide use in various fields. The release of NPs into various environmental compartments mainly ends up in the soil through water bodies which is a serious threat to living things especially plants. When present in soil, NPs may cause toxicity in plants which increase significance to minimize NPs stress in plants. Although gibberellic acid (GA) is one of the phytohormones that has the potential to alleviate abiotic/biotic stresses in crops plant, GA-mediated alleviation of cerium oxide (CeO2) NPs in plants is still unknown, despite the large-scale application of CeO2-NPs in various fields. The present study was performed to highlight the ability of foliar-applied GA in reducing CeO2-NPs toxicity in wheat under soil exposure of CeO2-NPs. We observed that CeO2-NPs alone adversely affected the dry weights, chlorophyll contents, and nutrients and caused oxidative stress in plants, thereby reducing plant yield. GA coupled with CeO2-NPs reversed the changes caused by CeO2-NPs alone as indicated by the increase in plant growth, chlorophylls, nutrients, and yield. Furthermore, GA alleviated the oxidative stress in plants by enhancing antioxidant enzyme activities under CeO2-NPs exposure than the NPs alone which further provided the evidence of reduction in oxidative damage in plants by GA. Overall, evaluating the potential of GA in reducing CeO2-NPs toxicity in wheat could provide important information for improving food safety under CeO2-NPs exposure.


Assuntos
Cério , Nanopartículas , Antioxidantes , Biomassa , Giberelinas , Triticum
5.
Environ Pollut ; 254(Pt B): 113109, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31487671

RESUMO

The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.


Assuntos
Giberelinas/farmacologia , Nanopartículas/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Óxido de Zinco/toxicidade , Antioxidantes/farmacologia , Biomassa , Raízes de Plantas/efeitos dos fármacos , Solo , Poluentes do Solo/análise , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...