Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766445

RESUMO

Diabetes Mellitus, a metabolic disease, causes the body to lose control over blood glucose regulation. With recent advances in self-monitoring systems, a patient can access their personalized glycemic profile and may utilize it for efficient prediction of future blood glucose levels. An efficient diabetes management system demands the accurate estimation of blood glucose levels, which, apart from using an appropriate prediction algorithm, depends on discriminative data representation. In this research work, a transformation of event-based data into discriminative continuous features is proposed. Moreover, a multi-layered long short-term memory (LSTM)-based recurrent neural network is developed for the prediction of blood glucose levels in patients with type 1 diabetes. The proposed method is used to forecast the blood glucose level on a prediction horizon of 30 and 60 min. The results are evaluated for three patients using the Ohio T1DM dataset. The proposed scheme achieves the lowest RMSE score of 14.76 mg/dL and 25.48 mg/dL for prediction horizons of 30 min and 60 min, respectively. The suggested methodology can be utilized in closed-loop systems for precise insulin delivery to type 1 patients for better glycemic control.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33809665

RESUMO

COVID-19 syndrome has extensively escalated worldwide with the induction of the year 2020 and has resulted in the illness of millions of people. COVID-19 patients bear an elevated risk once the symptoms deteriorate. Hence, early recognition of diseased patients can facilitate early intervention and avoid disease succession. This article intends to develop a hybrid deep neural networks (HDNNs), using computed tomography (CT) and X-ray imaging, to predict the risk of the onset of disease in patients suffering from COVID-19. To be precise, the subjects were classified into 3 categories namely normal, Pneumonia, and COVID-19. Initially, the CT and chest X-ray images, denoted as 'hybrid images' (with resolution 1080 × 1080) were collected from different sources, including GitHub, COVID-19 radiography database, Kaggle, COVID-19 image data collection, and Actual Med COVID-19 Chest X-ray Dataset, which are open source and publicly available data repositories. The 80% hybrid images were used to train the hybrid deep neural network model and the remaining 20% were used for the testing purpose. The capability and prediction accuracy of the HDNNs were calculated using the confusion matrix. The hybrid deep neural network showed a 99% classification accuracy on the test set data.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Radiografia Torácica , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Raios X
3.
Cancers (Basel) ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131409

RESUMO

Cancer pathology reflects disease progression (or regression) and associated molecular characteristics, and provides rich phenotypic information that is predictive of cancer grade and has potential implications in treatment planning and prognosis. According to the remarkable performance of computational approaches in the digital pathology domain, we hypothesized that machine learning can help to distinguish low-grade gliomas (LGG) from high-grade gliomas (HGG) by exploiting the rich phenotypic information that reflects the microvascular proliferation level, mitotic activity, presence of necrosis, and nuclear atypia present in digital pathology images. A set of 735 whole-slide digital pathology images of glioma patients (median age: 49.65 years, male: 427, female: 308, median survival: 761.26 days) were obtained from TCGA. Sub-images that contained a viable tumor area, showing sufficient histologic characteristics, and that did not have any staining artifact were extracted. Several clinical measures and imaging features, including conventional (intensity, morphology) and advanced textures features (gray-level co-occurrence matrix and gray-level run-length matrix), extracted from the sub-images were further used for training the support vector machine model with linear configuration. We sought to evaluate the combined effect of conventional imaging, clinical, and texture features by assessing the predictive value of each feature type and their combinations through a predictive classifier. The texture features were successfully validated on the glioma patients in 10-fold cross-validation (accuracy = 75.12%, AUC = 0.652). The addition of texture features to clinical and conventional imaging features improved grade prediction compared to the models trained on clinical and conventional imaging features alone (p = 0.045 and p = 0.032 for conventional imaging features and texture features, respectively). The integration of imaging, texture, and clinical features yielded a significant improvement in accuracy, supporting the synergistic value of these features in the predictive model. The findings suggest that the texture features, when combined with conventional imaging and clinical markers, may provide an objective, accurate, and integrated prediction of glioma grades. The proposed digital pathology imaging-based marker may help to (i) stratify patients into clinical trials, (ii) select patients for targeted therapies, and (iii) personalize treatment planning on an individual person basis.

4.
Cancers (Basel) ; 11(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683818

RESUMO

Distinguishing benign from malignant disease is a primary challenge for colon histopathologists. Current clinical methods rely on qualitative visual analysis of features such as glandular architecture and size that exist on a continuum from benign to malignant. Consequently, discordance between histopathologists is common. To provide more reliable analysis of colon specimens, we propose an end-to-end computational pathology pipeline that encompasses gland segmentation, cancer detection, and then further breaking down the malignant samples into different cancer grades. We propose a multi-step gland segmentation method, which models tissue components as ellipsoids. For cancer detection/grading, we encode cellular morphology, spatial architectural patterns of glands, and texture by extracting multi-scale features: (i) Gland-based: extracted from individual glands, (ii) local-patch-based: computed from randomly-selected image patches, and (iii) image-based: extracted from images, and employ a hierarchical ensemble-classification method. Using two datasets (Rawalpindi Medical College (RMC), n = 174 and gland segmentation (GlaS), n = 165) with three cancer grades, our method reliably delineated gland regions (RMC = 87.5%, GlaS = 88.4%), detected the presence of malignancy (RMC = 97.6%, GlaS = 98.3%), and predicted tumor grade (RMC = 98.6%, GlaS = 98.6%). Training the model using one dataset and testing it on the other showed strong concordance in cancer detection (Train RMC - Test GlaS = 94.5%, Train GlaS - Test RMC = 93.7%) and grading (Train RMC - Test GlaS = 95%, Train GlaS - Test RMC = 95%) suggesting that the model will be applicable across institutions. With further prospective validation, the techniques demonstrated here may provide a reproducible and easily accessible method to standardize analysis of colon cancer specimens.

5.
Neuroimage ; 155: 530-548, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28414186

RESUMO

Neuroimaging has made it possible to measure pathological brain changes associated with Alzheimer's disease (AD) in vivo. Over the past decade, these measures have been increasingly integrated into imaging signatures of AD by means of classification frameworks, offering promising tools for individualized diagnosis and prognosis. We reviewed neuroimaging-based studies for AD and mild cognitive impairment classification, selected after online database searches in Google Scholar and PubMed (January, 1985-June, 2016). We categorized these studies based on the following neuroimaging modalities (and sub-categorized based on features extracted as a post-processing step from these modalities): i) structural magnetic resonance imaging [MRI] (tissue density, cortical surface, and hippocampal measurements), ii) functional MRI (functional coherence of different brain regions, and the strength of the functional connectivity), iii) diffusion tensor imaging (patterns along the white matter fibers), iv) fluorodeoxyglucose positron emission tomography (FDG-PET) (metabolic rate of cerebral glucose), and v) amyloid-PET (amyloid burden). The studies reviewed indicate that the classification frameworks formulated on the basis of these features show promise for individualized diagnosis and prediction of clinical progression. Finally, we provided a detailed account of AD classification challenges and addressed some future research directions.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Aprendizado de Máquina , Neuroimagem , Sintomas Prodrômicos , Doença de Alzheimer/classificação , Disfunção Cognitiva/classificação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...