Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 29(8): 1229-1239, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31902053

RESUMO

Mercury is a persistent, biomagnifying contaminant that can cause negative behavioral, immunological, and reproductive effects in wildlife and human populations. We examined the role of wetland water-management on mercury bioaccumulation in songbirds and ducks at Kellys Slough National Wildlife Refuge Complex, near Grand Forks, North Dakota USA. We assessed mercury concentrations in blood of wetland-foraging songbirds (80 common yellowthroats [Geothlypis trichas] and 14 Nelson's sparrows [Ammospiza nelsoni]) and eggs of upland-nesting ducks (28 gadwall [Mareca strepera], 19 blue-winged teal [Spatula discors], and 13 northern shoveler [S. clypeta]) across four wetland water-management classifications. Nelson's sparrow blood mercury concentrations were elevated (mean: 1.00 µg/g ww; 95% CL: 0.76-1.31) and similar to those reported 6 years previously. Mercury in songbird blood and duck eggs varied among wetland water-management classifications. Songbirds and ducks had 67% and 49% lower mercury concentrations, respectively, when occupying wetlands that were drawn down with water flow compared to individuals occupying isolated-depressional wetlands with no outflow. Additionally, songbirds within impounded and partially drawn-down wetland units with water flow had mercury concentrations that were 26-28% lower, respectively, than individuals within isolated-depressional wetlands with no outflow. Our results confirm that mercury concentrations in songbirds at Kellys Slough continue to be elevated and suggest that water-management could be an important tool for wetland managers to reduce bioaccumulation of mercury in birds.


Assuntos
Patos/metabolismo , Mercúrio/metabolismo , Aves Canoras/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Conservação dos Recursos Naturais , Monitoramento Ambiental , Áreas Alagadas
2.
PLoS One ; 9(1): e83430, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416165

RESUMO

In the past decade, severe weather and West Nile virus were major causes of chick mortality at American white pelican (Pelecanus erythrorhynchos) colonies in the northern plains of North America. At one of these colonies, Chase Lake National Wildlife Refuge in North Dakota, spring arrival by pelicans has advanced approximately 16 days over a period of 44 years (1965-2008). We examined phenology patterns of pelicans and timing of inclement weather through the 44-year period, and evaluated the consequence of earlier breeding relative to weather-related chick mortality. We found severe weather patterns to be random through time, rather than concurrently shifting with the advanced arrival of pelicans. In recent years, if nest initiations had followed the phenology patterns of 1965 (i.e., nesting initiated 16 days later), fewer chicks likely would have died from weather-related causes. That is, there would be fewer chicks exposed to severe weather during a vulnerable transition period that occurs between the stage when chicks are being brooded by adults and the stage when chicks from multiple nests become part of a thermally protective crèche.


Assuntos
Aves/fisiologia , Mudança Climática , Reprodução/fisiologia , Animais , Cruzamento , Lagos , Comportamento de Nidação/fisiologia , North Dakota , Chuva , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...