Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670207

RESUMO

This study characterized four corrole derivatives, namely Cbz-Cor, MetCbz-Cor, PTz-Cor, and PTzEt-Cor, examining their photophysical, electrochemical, photobiological, and biomolecule-binding properties. Experimental photophysical data of absorption and emission elements correlated with a theoretical analysis obtained through time-dependent density functional theory (TD-DFT). As for the photophysical properties, we observed lower fluorescence quantum yields and discernible differences between the excited and ground states, as indicated by Stokes shift values. Natural Transition Orbit (NTO) plots presented high occupied molecular orbital - low unoccupied molecular orbital (HOMO-LUMO) densities around the tetrapyrrolic macrocycle in all examples. Our findings demonstrate that corroles maintain stability in solution and offer photostability (<20 %), predominantly in DMSO(5 %)/Tris-HCl (pH 7.4) buffer solution. Furthermore, the singlet oxygen (1O2) quantum yield and log POW values underscore their potential application in photoinactivation approaches, as these corroles serve as effective ROS generators with more lipophilic features. We also evaluated their biomolecular binding capacity towards salmon sperm DNA and human serum albumin using spectroscopic techniques and molecular docking analysis for sustenance. Concerning biomolecule interaction profiles, the corrole derivatives showed a propensity for interacting in the minor grooves of the double helix DNA due to secondary forces, which were more pronounced in site III of the human serum protein.


Assuntos
Carbazóis , DNA , Fenotiazinas , Albumina Sérica Humana , DNA/química , Fenotiazinas/química , Humanos , Carbazóis/química , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Porfirinas/química , Animais , Ligação Proteica , Salmão , Simulação de Acoplamento Molecular , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
2.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666341

RESUMO

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Compostos Organofosforados , Vanádio , Humanos , Vanádio/química , Vanádio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , DNA/metabolismo , DNA/química , Sobrevivência Celular/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Simulação de Acoplamento Molecular , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Estrutura Molecular , Ligantes , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
3.
Toxicology ; 504: 153793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574843

RESUMO

Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution. Consequently, these molecules are promising candidates as new and more effective photosensitizers with biomedical, environmental, and other biomedical applications. Prior to human exposure, it is essential to establish the toxicological profile of these molecules using in vivo models. In this study, we used Caenorhabditis elegans, a small free-living nematode, as a model for assessing toxic effects and predicting toxicity in preclinical research. We evaluated the toxic effects of porphyrins (neutral and tetra-cationic) on nematodes under dark/light conditions. Our findings demonstrate that tetra-methylated porphyrins (3TMeP and 4TMeP) at a concentration of 3.3 µg/mL (1.36 and 0.93 µM) exhibit high toxicity (as evidenced by reduced survival, development, and locomotion) under dark conditions. Moreover, photoactivated tetra-methylated porphyrins induce higher ROS levels compared to neutral (3TPyP and 4TPyP), tetra-palladated (3PdTPyP and 4PdTPyP), and tetra-platinated (3PtTPyP and 4PtTPyP) porphyrins, which may be responsible for the observed toxic effects.


Assuntos
Caenorhabditis elegans , Luz , Fármacos Fotossensibilizantes , Porfirinas , Animais , Caenorhabditis elegans/efeitos dos fármacos , Porfirinas/toxicidade , Porfirinas/química , Fármacos Fotossensibilizantes/toxicidade , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Cátions/toxicidade , Relação Dose-Resposta a Droga
4.
World J Microbiol Biotechnol ; 40(4): 124, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441804

RESUMO

Multidrug-resistant (MDR) microorganisms pose a threat to animal health, particularly in integumentary diseases, which can be caused by multiple organisms and often manifest as biofilms, hindering treatment effectiveness. We evaluated the antimicrobial activity of antimicrobial photodynamic therapy (aPDT) using a water-soluble tetra-cationic porphyrin (4-H2TMeP) against MDR bacteria cultured in biofilm and in mono and polyculture grown on canine skin samples. We utilized 4-H2TMeP porphyrin against MDR Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus pseudintermedius. A non-cytotoxic concentration of 4-H2TMeP (40 µM), previously shown to be effective in vitro against these bacteria cultured in solution, was employed. Biofilms were treated with 4-H2TMeP and subjected to light irradiation for 30, 60, and 90 min. Monocultures on canine skin samples were treated with 4-H2TMeP and irradiated for 30 (S. pseudintermedius), 60 (E. coli), or 60 and 90 min (P. aeruginosa). Polycultures of S. pseudintermedius and E. coli were treated with light for 60 and 90 min. The efficacy of aPDT was evaluated by plating light-exposed biofilms, mono and polycultures of bacteria obtained from skin samples exposed to light and kept in the dark. Colony-forming units were counted after 24 h of incubation at 37 °C. aPDT using 4-H2TMeP reduced bacterial concentrations of S. pseudintermedius and E. coli biofilms. Additionally, it significantly reduced bacterial concentrations cultivated on skin samples, with a particular emphasis on S. pseudintermedius. These findings indicate that aPDT with 4-H2TMeP is a promising alternative treatment against MDR bacteria in animal skin infections and should be further explored through in vivo research.


Assuntos
Escherichia coli , Porfirinas , Animais , Cães , Biofilmes , Cátions , Porfirinas/farmacologia , Água
5.
J Photochem Photobiol B ; 251: 112847, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241947

RESUMO

The bovine tick Rhipicephalus microplus, a primary ectoparasite of veterinary concern, contributes significantly to disease transmission and reduced cattle productivity, resulting in substantial economic losses. The overuse of chemical acaricides has led to the emergence of resistant strains, posing a considerable challenge to veterinary medicine. Consequently, the development of alternative parasite control methods is essential to ensure livestock quality and enhance food safety worldwide. Our study introduces an innovative approach to photodynamic inactivation (PDI) of the bovine tick, harnessing natural daylight for a potential field application. Reproductive parameters (female and egg mass, egg production index, and larval hatch) were evaluated in engorged female ticks under photodynamic action using the hematoporphyrin (HP) and tetra-cationic porphyrins free-base meso-tetra-ruthenated (4-pyridyl) (RuTPyP) and its zinc(II) complex (ZnRuTPyP) as photosensitizers (PS). The results showed that there was no significant difference between the groups treated with tetra­ruthenium porphyrins and the control group. However, HP exhibits a control percentage of 97.9% at a concentration of 2.5 µmol.L-1, aligning with the expected control rates achieved by conventional chemical acaricides. Photophysical and physicochemical parameters such as the number of singlet oxygen produced and lipophilicity were discussed for each PS and related to tick control percentages. Furthermore, the interaction between HP and chitin, an important macromolecule presents in the tick's cuticle, considered as the primary target tick structure during PDI was observed by the absorption and fluorescence emission spectroscopic techniques. Therefore, the results presented here extend the potential for controlling R. microplus through photodynamic inactivation while utilizing sunlight as a source of natural irradiation.


Assuntos
Acaricidas , Porfirinas , Rhipicephalus , Animais , Feminino , Bovinos , Acaricidas/farmacologia , Rhipicephalus/fisiologia , Porfirinas/farmacologia , Reprodução
6.
Braz J Microbiol ; 55(1): 11-24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38051456

RESUMO

In this manuscript, we report the photo-inactivation evaluation of new tetra-cationic porphyrins with peripheral Pt(II) complexes ate meta N-pyridyl positions in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains (RGM). Four different metalloderivatives were synthetized and applied. aPDT experiments in the strains of Mycobacteroides abscessus subsp. Abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycobacteroides abscessus subsp. Massiliense (ATCC 48898), and Mycolicibacterium smegmatis (ATCC 700084) conducted with adequate concentration of photosensitizers (PS) under white-light conditions at 90 min (irradiance of 50 mW cm-2 and a total light dosage of 270 J cm-2) showed that the Zn(II) derivative is the most effective PS significantly reduced the concentration of viable mycobacteria. The effectiveness of the molecule as PS for PDI studies is also clear with mycobacteria, which is strongly related with the porphyrin peripheral charge and coordination platinum(II) compounds and consequently about the presence of metal center ion. This class of PS may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.


Assuntos
Mycobacterium , Porfirinas , Platina/farmacologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Antibacterianos
7.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446879

RESUMO

We report the DNA-binding properties of three porphyrins with peripheral thienyl substituents (TThPor, PdTThPor and PtTThPor). The binding capacity of each porphyrin with DNA was determined by UV-Vis and steady-state fluorescence emission spectroscopy combined with molecular docking calculations. The results suggest that the interaction of these compounds probably occurs via secondary interactions via external grooves (minor grooves) around the DNA macromolecule. Moreover, porphyrins containing peripheral Pd(II) or Pt(II) complexes (PdTThPor and PtTThPor) were able to promote photo-damage in the DNA.


Assuntos
Porfirinas , Porfirinas/química , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , DNA/química
8.
Photodiagnosis Photodyn Ther ; 42: 103641, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37268042

RESUMO

Leishmaniasis is a neglected disease that impacts more than one billion people in endemic areas of the globe. Several drawbacks are associated with the currently existing drugs for treatment such as low effectiveness, toxicity, and the emergence of resistant strains that demonstrate the importance of looking for novel therapeutic alternatives. Photodynamic therapy (PDT) is a promising novel alternative for cutaneous leishmaniasis treatment because its topical application avoids potential side effects generally associated with oral/parenteral application. A light-sensitive compound known as photosensitizer (PS) interacts with light and molecular oxygen to generate reactive oxygen species (ROS), which promote cell death by oxidative stress through PDT approaches. Here, for the first time, we demonstrate the antileishmanial effect of tetra-cationic porphyrins with peripheral Pt(II)- and Pd(II)-polypyridyl complexes using PDT. The isomeric tetra-cationic porphyrins in the meta positions, 3-PtTPyP, and 3-PdTPyP, exhibited the highest antiparasitic activity against promastigote (IC50-pro = 41.8 nM and 46.1 nM, respectively) and intracellular amastigote forms (IC50-ama = 27.6 nM and 38.8 nM, respectively) of L. amazonensis under white light irradiation (72 J cm-2) with high selectivity (SI > 50) for both forms of parasites regarding mammalian cells. In addition, these PS induced the cell death of parasites principally by a necrotic process in the presence of white light by mitochondrial and acidic compartments accumulation. This study showed that porphyrins 3-PtTPyP and 3-PdTPyP displayed a promising antileishmanial-PDT activity with potential application for cutaneous leishmaniasis treatment.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Fotoquimioterapia , Porfirinas , Humanos , Animais , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Mamíferos
9.
Pharmaceutics ; 15(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242753

RESUMO

Onychomycosis is a prevalent nail fungal infection, and Candida albicans is one of the most common microorganisms associated with it. One alternative therapy to the conventional treatment of onychomycosis is antimicrobial photoinactivation. This study aimed to evaluate for the first time the in vitro activity of cationic porphyrins with platinum(II) complexes 4PtTPyP and 3PtTPyP against C. albicans. The minimum inhibitory concentration of porphyrins and reactive oxygen species was evaluated by broth microdilution. The yeast eradication time was evaluated using a time-kill assay, and a checkerboard assay assessed the synergism in combination with commercial treatments. In vitro biofilm formation and destruction were observed using the crystal violet technique. The morphology of the samples was evaluated by atomic force microscopy, and the MTT technique was used to evaluate the cytotoxicity of the studied porphyrins in keratinocyte and fibroblast cell lines. The porphyrin 3PtTPyP showed excellent in vitro antifungal activity against the tested C. albicans strains. After white-light irradiation, 3PtTPyP eradicated fungal growth in 30 and 60 min. The possible mechanism of action was mixed by ROS generation, and the combined treatment with commercial drugs was indifferent. The 3PtTPyP significantly reduced the preformed biofilm in vitro. Lastly, the atomic force microscopy showed cellular damage in the tested samples, and 3PtTPyP did not show cytotoxicity against the tested cell lines. We conclude that 3PtTPyP is an excellent photosensitizer with promising in vitro results against C. albicans strains.

10.
Photodiagnosis Photodyn Ther ; 42: 103542, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003596

RESUMO

This manuscript presents the first report on antimicrobial photo-inactivation in vitro using tetra-cationic porphyrins with peripheral platinum(II) bipyridyl complexes against Gram-positive bacteria. Two isomeric tetra-cationic porphyrins (3TPyP and 4TPyP) were tested against clinically important bacterial species. The antimicrobial activity assays were performed at specific photosensitizer (PS) concentrations under dark and white-light LED irradiation conditions for 120 min. The porphyrin 3-PtTPyP was the most efficient PS against the bacteria tested, inhibiting bacterial growth in just 15 min and 30 min at low concentrations (3.75 and 0.45 µM). The minimal inhibitory concentration of the porphyrin increased in the presence of reactive oxygen species scavengers, indicating that singlet oxygen and radical species likely participated in the photo-oxidation mechanism. In addition, the checkerboard assay that tests the association of compounds, showed a synergistic effect, suggesting a potentiation of the antibacterial effect when porphyrin was tested in combination with ciprofloxacin and vancomycin. Thus, tetra-cationic porphyrins containing platinum(II) complexes are promising agents for microbial photo-inactivation as an alternative therapy against infections.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Platina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Enterococcus , Staphylococcus , Porfirinas/farmacologia , Antibacterianos/farmacologia , Bactérias
11.
Microb Pathog ; 178: 106081, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948363

RESUMO

Infectious bovine keratoconjunctivitis (IBK) is the most important eye disease in ruminants worldwide. Moraxella bovis and Moraxella bovoculi can form biofilm and are frequently isolated from affected animals. Antimicrobials are used worldwide to treat clinical cases of IBK, although they have limited success in clearing the infection. Therefore, photodynamic therapy using porphyrins as photosensitizing molecules is an alternative method to eliminate microorganisms, including biofilms. We evaluated the antibacterial activity of a zinc(II) metalloporphyrin (ZnTMeP) against M. bovis and M. bovoculi biofilms since this compound can efficiently inactivate planktonic Moraxella spp. This study was carried out with two reference strains of Moraxella spp. (M. bovis: ATCC® 10900 and M. bovoculli: ATCC® BAA1259). The antibacterial activity of 4.0 µM of the ZnTMeP porphyrin was evaluated on forming and consolidate biofilms with three 30-min cycles of white-light exposure for three days. The ZnTMeP porphyrin reduced M. bovis and M. bovoculi biofilm formation. In addition, ZnTMeP partially destroyed consolidated M. bovoculi biofilms in the second white-light irradiation cycle, although the porphyrin had no effect against the consolidated biofilm of M. bovis. Despite the biofilm still not being completely inactivated, our findings are promising and encourage further experiments using the phototherapy protocol.


Assuntos
Doenças dos Bovinos , Ceratoconjuntivite Infecciosa , Infecções por Moraxellaceae , Fotoquimioterapia , Porfirinas , Bovinos , Animais , Porfirinas/farmacologia , Ceratoconjuntivite Infecciosa/microbiologia , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Moraxella , Antibacterianos/farmacologia , Infecções por Moraxellaceae/microbiologia , Infecções por Moraxellaceae/veterinária , Biofilmes
12.
Photodiagnosis Photodyn Ther ; 42: 103343, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36806829

RESUMO

BACKGROUND: Candida spp. is the main fungal genus related to infections in humans, and its treatment has become a challenge due to the production of biofilm and its resistance/multi-resistance profile to conventional antifungals. Antimicrobial photodynamic therapy stands out as a treatment characterized by a broad spectrum of antimicrobial action, being able to induce oxidative stress in pathogens, and porphyrins are photosensitizers with high selectivity to pathogens. Thus, this work aimed to analyze the photoinactivation of different species of Candida by two cationic (4-H2TMeP+ and 3-H2TMeP+) and one anionic (4-H2TPSP‒) porphyrins. MATERIALS AND METHODS: Microdilution assays were performed to determine the MIC100, with subsequent determination of MFC100. Determination of oxidative species was done through the use of scavengers, while biofilm morphological features were investigated using the atomic force microscopy. RESULTS: Cationic porphyrins were significantly efficient in inactivating Candida albicans and non-albicans species with 100% growth inhibition and fungicidal activity (MFC100/MIC100 ≤ 4.0). The cationic porphyrins were also able to interfere in Candida spp biofilm formation. The photo-oxidative mechanism activated by 3-H2TMeP+ in Candida spp. is concurrent with the production of singlet oxygen and oxygen radical species. In the AFM analysis, 3-H2TMeP+ was able to reduce yeast adhesion to the surface. CONCLUSIONS: Cationic porphyrins can photo-inactivate different species of Candida in both planktonic and biofilm-associated forms, and reduce the adhesion of these fungi to the surface.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Humanos , Candida , Água , Porfirinas/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Candida albicans , Antifúngicos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes
13.
Photodiagnosis Photodyn Ther ; 42: 103266, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36587859

RESUMO

This manuscript presents the cytotoxicity, antimicrobial activity, antibiofilm preliminary properties, and associated therapy with commercial drugs using water-soluble tetra-cationic porphyrins against Pseudomonas aeruginosa. Two commercial tetra-cationic porphyrins were tested against a standard strain of P. aeruginosa 01 (PA01) in antibacterial activity assays under dark conditions and irradiated with white light for 120 min. Porphyrin 4-H2TMePor showed better antimicrobial activity and was chosen for further tests. Increased minimum inhibitory concentration was observed in the presence of reactive oxygen species, suggesting that photooxidation was mediated by the singlet oxygen production. In the time-kill curve assay, 4-H2TMePor inhibited bacterial growth in 90 min of irradiation. The checkerboard assay revealed synergistic interactions. Biofilms of the standard PA01 strain and three clinical isolates were formed. The biofilm destruction assay was more efficient for PA01, significantly reducing the biofilm biomass formed compared to the positive control. The associated treatment to destroy the biofilm potentiated a significant decrease in the biofilm biomass compared to the positive control. The photosensitizer did not damage human keratinocytes or mouse fibroblasts in the cytotoxicity assays, demonstrating the safety of using 4-H2TMePor. Atomic force microscopy indicated lower adhesion force, higher cell wall deformation, and higher dissipation energy in the treated control compared to untreated PA01. Given our findings, it is evident that water-soluble tetra-cationic porphyrins have excellent antimicrobial and a preliminary antibiofilm activity against Gram-negative bacteria, proving to be a potential photosensitizer for clinical use.


Assuntos
Fotoquimioterapia , Porfirinas , Humanos , Animais , Camundongos , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Pseudomonas aeruginosa , Fotoquimioterapia/métodos , Antibacterianos/farmacologia
14.
J Inorg Biochem ; 239: 112070, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450221

RESUMO

With the increasing development of metallopharmaceuticals, coordination compounds become viable alternatives for therapeutic uses. Despite the importance of platinum derivatives in this area, first-row transition metals complexes are welcome due to their characteristics. Vanadium is a promising metal in this context, as it has a range of compounds with different biological applications, including anticancer therapeutic effects. In this effort, the study of interactions between coordination compounds with deoxyribonucleic acid and with human serum albumin is fundamental. In this way, ten iminic ligands were synthesized by condensing p-substituted aromatic benzohydrazides (OH, CH3, H, NO2, and NH2) with salicylaldehyde (L1As-L5As) or pyridoxal hydrochloride (L1P-L5P). These ligands have characteristics that allow the tridentate coordination of vanadium cations, leading to the formation of ten vanadium(V) complexes (C1As-C5As and C1P-C5P) with different structural features, all characterized by single-crystal X-ray diffraction, UV-Vis and infrared spectroscopies, and cyclic voltammetry. In addition, the complexes were tested for their interactions with calf thymus deoxyribonucleic acid and human serum albumin by spectroscopic assays and molecular docking calculations. These new results can contribute to further research and provide different ways to design new vanadium complexes with biological applications.


Assuntos
Complexos de Coordenação , Vanádio , Humanos , Vanádio/química , Simulação de Acoplamento Molecular , Ligantes , Albumina Sérica Humana/química , DNA/química , Tomografia Computadorizada por Raios X , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
15.
Microb Pathog ; 174: 105859, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403712

RESUMO

Biofilms are responsible for up to 80% of antimicrobial-resistant nosocomial infections. Most of these infections are associated with medical devices such as urinary catheters, and in this context, it is estimated that 90-100% of patients who undergo long-term catheterization develop infections. Proteus mirabilis, the most prevalent microorganism, is responsible for 20-45% of these infections. Thus, this study aimed to evaluate, for the first time, the antimicrobial and antibiofilm effects of cationic porphyrins on P. mirabilis. Neutral porphyrins 3-H2TPyP and 4-H2TpyP and tetra-cationic derivatives 3-cis-PtTPyP and 4-cis-PtTPyP were evaluated in broth microdilution tests to determine the minimum inhibitory and bactericidal concentrations. Time-kill curves, checkerboard test, reactive oxygen species (ROS) scavenger assays, conventional biofilm formation, and biofilm assay with catheters were also performed. The microdilution tests showed greater efficacy against P. mirabilis when 3-cis-PtTPyP was exposed to white-light conditions; this also occurred when the microbial time-kill curve was performed at 0, 2, 6, and 12 h. The radical superoxide species was possibly responsible for photoinactivation in the ROS scavenger assays. In biofilm assays (conventional and catheter), 3-cis-PtTPyP obtained better results when irradiated with a white-light source. In the checkerboard assay, the same compound showed no differences when tested in association with ciprofloxacin hydrochloride. Our findings lead us to conclude that antimicrobial photodynamic therapy and cationic porphyrins obtained positive results and are promising alternatives to treat P. mirabilis biofilms.


Assuntos
Fotoquimioterapia , Porfirinas , Humanos , Proteus mirabilis , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/farmacologia , Biofilmes , Porfirinas/farmacologia
16.
J Mech Behav Biomed Mater ; 136: 105475, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195052

RESUMO

Several analytical methods have been employed to elucidate bonding mechanisms between dental hard tissues, luting agents and restorative materials. Atomic Force Microscopy (AFM) imaging that has been extensively used in materials science, but its full capabilities are poorly explored by dental research community. In fact, commonly used to obtain topographic images of different surfaces, it turns out that AFM is an underestimated technique considering that there are dozens of basic and advanced modes that are scarcely used to explain properties of biomaterials. Thus, this paper addresses the use of phase-contrast imaging, force-distance curves, nanomechanical and Kelvin probe force techniques during AFM analysis to explore topological, nanomechanical and electrical properties of Y-TZP samples modified by different surface treatments, which has been widely used to promote adhesive enhancements to such substrate. The AFM methods are capable of access erstwhile inaccessible properties of Y-TZP which allowed us to describe its adhesive properties correctly. Thus, AFM technique emerges as a key tool to investigate the complex nature of biomaterials and highlighting its inherent interdisciplinarity that can be successfully used for bridging fragmented disciplines such as solid-state physics, microbiology and dental sciences.


Assuntos
Materiais Biocompatíveis , Fenômenos Mecânicos , Microscopia de Força Atômica/métodos , Física
17.
Biofouling ; 38(6): 605-613, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35875928

RESUMO

In the last decade, Acinetobacter baumannii has emerged as a pathogen associated with infections in intensive care units worldwide, especially due to its ability to resist an extensive list of antibiotics. In this context, porphyrins have emerged as an important strategy in photodynamic therapy, since they are a group of tetrapyrrolic compounds with important photochemical and photobiological activities. In this study, the antimicrobial photodynamic activity of meso-tetra(4-N-methyl-pyridyl)porphyrin (H2TMePyP+) and meso-tetra(4-sulfonatophenyl)porphyrin (H2TPPS‒) was evaluated against A. baumannii by minimum inhibitory concentration (MIC), anti-biofilm activity, and the interaction with antibiotics after exposure to white-light LED irradiation. The cationic derivative H2TMePyP+ was more potent (MIC = 0.61 µM) than H2TPPS‒, with anti-biofilm activity and increased the antimicrobial activity of ciprofloxacin and amikacin. Given these findings, the tetra-cationic porphyrins can be assumed as prototypes to optimize and develop new agents by promoting oxidative stress and inducing free radical production.


Assuntos
Acinetobacter baumannii , Porfirinas , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Cátions/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Água
18.
J Inorg Biochem ; 233: 111854, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636301

RESUMO

Helical complexes composed of organic ligand strands and metallic centers, called helicates, present interactions with biomacromolecules, such as deoxyribonucleic acid, as one of their main biological applications in bioinorganic chemistry. Despite the potential antineoplastic and antibacterial results of the interactions between helicates and biomacromolecules, there is still a gap of research in the literature, primarily in terms of solubility in aqueous media. In this study, we present the synthesis, structural analysis, and interaction with biomacromolecules of two water-soluble cobalt(II) double-stranded helicates: [CoII2L22][CoII(NCS)4]∙9H2O (C1) and [CoII2L42]Cl2∙11H2O (C2). These complexes are obtained from iminic ligands (L2 and L4) derived from pyridoxal, a vitamin B6 aldehyde derivative. Through spectroscopic assays, these helical complexes were shown to have weak and moderate binding capacities with calf-thymus deoxyribonucleic acid and human serum albumin, respectively. The theoretical assays suggest that C1 and C2 interact with the minor groove of deoxyribonucleic acid and have different main binding sites with human serum albumin. Furthermore, Van der Waals and hydrogen bonds were shown to be the main intermolecular forces for these C1-C2:biomacromolecules interactions.


Assuntos
Cobalto , Piridoxal , Cobalto/química , DNA/química , Humanos , Ligantes , Albumina Sérica Humana , Água/química
19.
Photodiagnosis Photodyn Ther ; 38: 102770, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183782

RESUMO

We report the photoinactivation evaluation of Ag(II) porphyrins (cationic AgTMeP and anionic AgTPPS) in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains. The aPDT assays in the Mycolicibacterium fortuitum, Mycobacteroides abscessus subs. abscessus, Mycobacteroides abscessus subsp. massiliense, and Mycolicibacterium smegmatis strains conducted without aggregating photosensitizers (PS) under irradiation for 90 min (270 J/cm2) showed that the most effective PS (nanomolar range) significantly reduced the concentration of viable mycobacteria. Structural damage on the Mycolicibacterium smegmatis non-pathogenic model was observed using atomic force microscopy, revealing that Ag(II)-porphyrin induced extensive changes in its electrical and adhesive forces, demonstrating changes in topography that may be linked to the action of different fractions of reactive oxygen species. The results presented in this paper provide solid evidence for using cationic porphyrin AgTMeP as an alternative to the conventional treatment of cutaneous mycobacteriosis and the disinfection of prosthetic devices and hospital equipment.


Assuntos
Anti-Infecciosos , Mycobacterium , Fotoquimioterapia , Porfirinas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cátions/química , Cátions/farmacologia , Micobactérias não Tuberculosas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Prata/farmacologia
20.
Dalton Trans ; 51(4): 1646-1657, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35015799

RESUMO

We report the synthesis and characterization of two novel tetra-cationic porphyrins, containing Pt(II) or Pd(II) polypyridyl complexes attached at the peripheral position of N4-macrocycle. Compounds were characterized through elemental analysis, molar conductivity, cyclic voltammetry, and spectroscopy analysis. Photophysical and photobiological parameters were also evaluated. Also, the binding capacity of each porphyrin with human serum albumin (HSA) was determined by UV-Vis, steady-state, and time-resolved fluorescence spectroscopy, combined with molecular docking calculations. The results suggest that the interaction of these compounds is spontaneous, weak to moderate, and probably occurs at site III (subdomain IB) by non-covalent forces, including van der Waals and H-bonding. Moreover, porphyrins containing peripheral complexes improve their interactions with biomolecules, show good photostability, generate reactive oxygen species under white light studied by electron paramagnetic resonance (EPR) analysis, and promote photo-damage of HSA.


Assuntos
Paládio/farmacologia , Compostos de Platina/farmacologia , Porfirinas/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Paládio/química , Fotoquimioterapia , Fármacos Fotossensibilizantes , Compostos de Platina/química , Porfirinas/química , Conformação Proteica , Albumina Sérica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...