Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Pulmonol ; 55(12): 3429-3436, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32852101

RESUMO

INTRODUCTION AND OBJECTIVES: Acute bronchiolitis (AB) is the leading cause of hospitalization in infants and around 5% require intensive care treatment. Early identification of children diagnosed with AB at a high risk of severe progression is of great interest. The receptor for advanced glycation end products (RAGE), highly expressed in lung tissue, regulates immune responses and inflammation, and its soluble form, sRAGE, is believed to have an anti-inflammatory role. We hypothesized serum sRAGE might be a major determinant of AB severity and prognosis. This study was conducted to measure serum sRAGE in infants with severe AB and to assess its correlation with clinical severity, immediate complications, and outcome. METHODS: Single-center, prospective, observational study of hospitalized children with severe bronchiolitis admitted to the Pediatric Intensive Care Unit (PICU), from September 2015 to September 2016. RESULTS: A total of 52 children and 27 controls were included. The cases age ranged from 11 days to 21 months, resulting in a significant age difference with controls (11.85 vs 4.84 months, P < .01). Serum levels of sRAGE were lower but not significant in severe AB patients than in controls (1350.93 vs 1450.42 pg/mL; P = .399). No correlation was found between serum sRAGE and causative viruses, clinical symptoms, Wood-Downes score (a clinical severity score) on admission, respiratory support, or length of hospital stay. Serum sRAGE was also lower in the cases having had a previous respiratory disease (1463.84 vs 1072.43 pg/mL; P = .049). However, it was higher in patients with any lung consolidation on the chest X-ray (1584.79 vs 1131.62 pg/mL; P = .044) and weakly positively correlated with classical biomarkers (maximum C-reactive protein, +0.295, P = .034; maximum procalcitonin, +0.309; P = .029). CONCLUSION: This single-center study reveals that sRAGE couldn't predict AB severity or outcome in children hospitalized at PICU. Nevertheless, it significantly increased in the presence of any lung consolidation and had a positive correlation with classical biomarkers. The utility of sRAGE in this population could be probably elucidated with a better understanding of AGE-RAGE axis.


Assuntos
Bronquiolite/diagnóstico , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Biomarcadores/metabolismo , Bronquiolite/metabolismo , Proteína C-Reativa , Criança , Feminino , Hospitalização , Humanos , Lactente , Inflamação , Unidades de Terapia Intensiva Pediátrica , Tempo de Internação , Pulmão/metabolismo , Masculino , Prognóstico , Estudos Prospectivos
3.
Pediatr Crit Care Med ; 16(1): 45-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25360857

RESUMO

OBJECTIVES: To characterize cardiac preload responsiveness in pediatric patients with cardiovascular dysfunction and dilated cardiomyopathy using global end-diastolic volume index, stroke volume index, cardiac index, and extravascular lung water index. DESIGN: Prospective multicenter observational study. SETTING: Medical/surgical PICUs of seven Spanish University Medical Centers. PATIENTS: Seventy-five pediatric patients (42 male, 33 female), median age 36 months (range, 1-207 mo), were divided into three groups: normal cardiovascular status, cardiovascular dysfunction, and dilated cardiomyopathy. INTERVENTIONS: All patients received hemodynamic monitoring with PiCCO2 (Pulsion Medical System SE, Munich, Germany). We evaluated 598 transpulmonary thermodilution sets of measurements. In 40 patients, stroke volume index, cardiac index, and global end-diastolic volume index were measured before and after 66 fluid challenges and loadings to test fluid responsiveness at different preload levels. MEASUREMENTS AND MAIN RESULTS: Global end-diastolic volume versus predicted body surface area exhibits a power-law relationship: Global end-diastolic volume = 488.8·predicted body surface area (r = 0.93). Four levels of cardiac preload were established from the resulting "normal" global end-diastolic volume index (= 488.8·predicted body surface area). Stroke volume index and cardiac index versus global end-diastolic volume index/normal global end-diastolic volume index built using a linear mixed model analysis emulated Frank-Starling curves: in cardiovascular dysfunction group, stroke volume index (geometric mean [95% CI]) was 27 mL/m (24-31 mL/m) at "≤ 0.67 times normal global end-diastolic volume index," 37 mL/m (35-40 mL/m) at "> 0.67 ≤ 1.33 times normal global end-diastolic volume index" (Δ stroke volume index = 35%; p < 0.0001; area under the receiver-operating characteristic curve = 75%), 45 mL/ m (41-49 mL/m) at "> 1.33 ≤ 1.51 times normal global end-diastolic volume index" (Δ stroke volume index = 21%; p < 0.0001; area under the receiver-operating characteristic curve = 73%), and 47 mL/m (43-51 mL/m) at "> 1.51 times normal global end-diastolic volume index" (Δ stroke volume index = 4%; p = 1; area under the receiver-operating characteristic curve = 54%). In dilated cardiomyopathy group, stroke volume index was 21 mL/m (17-26 mL/m) at "> 0.67 ≤ 1.33 times normal global end-diastolic volume index," 27 mL/m (21-34 mL/ m) at "> 1.33 ≤ 1.51 times normal global end-diastolic volume index" (Δ stroke volume index = 29%; p = 0.005; area under the receiver-operating characteristic curve = 64%), and 25 mL/m (20-32 mL/m) at "> 1.51 times normal global end-diastolic volume index" (Δ stroke volume index = -8%; p = 1; area under the receiver-operating characteristic curve = 54%). CONCLUSIONS: This study provides "normal" values for global end-diastolic volume index and limits of cardiac preload responsiveness in pediatric patients with cardiovascular dysfunction and dilated cardiomyopathy: 1.33 times normal global end-diastolic volume index represents the upper limit of patent cardiac preload responsiveness, with the highest expected responsiveness being below 0.67 times normal global end-diastolic volume index. The maximum response of the Frank-Starling relationship and therefore the level of no additional preload reserve is 1.33 to 1.51 times normal global end-diastolic volume index. Above 1.51 times normal global end-diastolic volume index preload responsiveness is unlikely, and the risk of pulmonary edema is maximal.


Assuntos
Débito Cardíaco/fisiologia , Cardiomiopatia Dilatada/fisiopatologia , Coração/fisiopatologia , Monitorização Fisiológica/métodos , Volume Sistólico/fisiologia , Termodiluição/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Curva ROC , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...