Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 79(12): 133-143, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214774

RESUMO

Centrosomes serve as a site for microtubule nucleation and these microtubules will grow and interact with the motor protein dynein at the cortex. The position of the centrosomes determines where the mitotic spindle will develop across all cell types. Centrosome positioning is achieved through dynein and microtubule-mediated force generation. The mechanism and regulation of force generation during centrosome positioning are not fully understood. Centrosome and pronuclear movement in the first cell cycle of the Caenorhabditis elegans early embryo undergoes both centration and rotation prior to cell division. The proteins LET-99 and GPB-1 have been postulated to have a role in force generation associated with pronuclear centration and rotation dynamics. When the expression of these proteins is perturbed, pronuclear positioning exhibits a movement defect characterized by oscillatory ("wobble") behavior of the pronuclear complex (PNC). To determine if this movement defect is due to an effect on cortical dynein distribution, we utilize RNAi-mediated knockdown of LET-99 and GPB-1 to induce wobble and assay for any effects on GFP-tagged dynein localization in the early C. elegans embryo. To compare and quantify the movement defect produced by the knockdown of LET-99 and GPB-1, we devised a quantification method that measures the strength of wobble ("wobble metric") observed under these experimental conditions. Our quantification of pronuclear complex dynamics and dynein localization shows that loss of LET-99 and GPB-1 induces a similar movement defect which is independent of cortical dynein localization in the early C. elegans embryo.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Zigoto/metabolismo , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Centrossomo/metabolismo
2.
Trends Cell Biol ; 29(1): 3-5, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470626

RESUMO

Centrioles must duplicate as cells progress through the cell cycle but it is unclear how the site of duplication is selected. A recent computational study demonstrates that two separate but interacting feedback mechanisms (autocatalytic activation and substrate depletion) are capable of selecting a single site for centriole biogenesis.


Assuntos
Centríolos/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...