Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559084

RESUMO

The development of novel dry powders for dry powder inhalers (DPIs) requires the in vitro assessment of DPI aerodynamic performance. As a potential complementary method, in silico numerical simulations can provide additional information about the mechanisms that guide the particles and their behavior inside DPIs. The aim of this study was to apply computational fluid dynamics (CFDs) coupled with a discrete phase model (DPM) to describe the forces and particle trajectories inside the RS01® as a model DPI device. The methodology included standard fluid flow equations but also additional equations for the particle sticking mechanism, as well as particle behavior after contacting the DPI wall surface, including the particle detachment process. The results show that the coefficient of restitution between the particle and the impact surface does not have a high impact on the results, meaning that all tested combinations gave similar output efficiencies and particle behaviors. No sliding or rolling mechanisms were observed for the particle detachment process, meaning that simple bouncing off or deposition particle behavior is present inside DPIs. The developed methodology can serve as a basis for the additional understanding of the particles' behavior inside DPIs, which is not possible using only in vitro experiments; this implies the possibility of increasing the efficiency of DPIs.

2.
Pharmaceutics ; 13(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834247

RESUMO

In vitro assessment of dry powders for inhalation (DPIs) aerodynamic performance is an inevitable test in DPI development. However, contemporary trends in drug development also implicate the use of in silico methods, e.g., computational fluid dynamics (CFD) coupled with discrete phase modeling (DPM). The aim of this study was to compare the designed CFD-DPM outcomes with the results of three in vitro methods for aerodynamic assessment of solid lipid microparticle DPIs. The model was able to simulate particle-to-wall sticking and estimate fractions of particles that stick or bounce off the inhaler's wall; however, we observed notable differences between the in silico and in vitro results. The predicted emitted fractions (EFs) were comparable to the in vitro determined EFs, whereas the predicted fine particle fractions (FPFs) were generally lower than the corresponding in vitro values. In addition, CFD-DPM predicted higher mass median aerodynamic diameter (MMAD) in comparison to the in vitro values. The outcomes of different in vitro methods also diverged, implying that these methods are not interchangeable. Overall, our results support the utility of CFD-DPM in the DPI development, but highlight the need for additional improvements in these models to capture all the key processes influencing aerodynamic performance of specific DPIs.

3.
Asian J Pharm Sci ; 16(3): 350-362, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34276823

RESUMO

This study aims to understand the absorption patterns of three different kinds of inhaled formulations via in silico modeling using budesonide (BUD) as a model drug. The formulations investigated in this study are: (i) commercially available micronized BUD mixed with lactose (BUD-PT), (ii) BUD nanocrystal suspension (BUD-NC), (iii) BUD nanocrystals embedded hyaluronic acid microparticles (BUD-NEM). The deposition patterns of the three inhaled formulations in the rats' lungs were determined in vivo and in silico predicted, which were used as inputs in GastroPlus™ software to predict drug absorption following aerosolization of the tested formulations. BUD pharmacokinetics, estimated based on intravenous data in rats, was used to establish a drug-specific in silico absorption model. The BUD-specific in silico model revealed that drug pulmonary solubility and absorption rate constant were the key factors affecting pulmonary absorption of BUD-NC and BUD-NEM, respectively. In the case of BUD-PT, the in silico model revealed significant gastrointestinal absorption of BUD, which could be overlooked by traditional in vivo experimental observation. This study demonstrated that in vitro-in vivo-in silico approach was able to identify the key factors that influence the absorption of different inhaled formulations, which may facilitate the development of orally inhaled formulations with different drug release/absorption rates.

4.
Mol Inform ; 40(5): e2000187, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33787066

RESUMO

Considering the urgent need for novel therapeutics in ongoing COVID-19 pandemic, drug repurposing approach might offer rapid solutions comparing to de novo drug design. In this study, we designed an integrative in silico drug repurposing approach for rapid selection of potential candidates against SARS-CoV-2 Main Protease (Mpro ). To screen FDA-approved drugs, we implemented structure-based molecular modelling techniques, physiologically-based pharmacokinetic (PBPK) modelling of drugs disposition and data mining analysis of drug-gene-COVID-19 association. Through presented approach, we selected the most promising FDA approved drugs for further COVID-19 drug development campaigns and analysed them in context of available experimental data. To the best of our knowledge, this is unique in silico study which integrates structure-based molecular modeling of Mpro inhibitors with predictions of their tissue disposition, drug-gene-COVID-19 associations and prediction of pleiotropic effects of selected candidates.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Proteínas da Matriz Viral/antagonistas & inibidores , Antivirais/química , Simulação por Computador , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , Proteínas da Matriz Viral/metabolismo
5.
Eur J Pharm Sci ; 156: 105588, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045367

RESUMO

The aim of this study was to optimize the parameters of the complex melt-emulsification process coupled with the spray-drying, in order to maintain the balance between solid lipid microparticles (SLMs) powders aerodynamic performance and salbutamol sulfate release rate. Quality target product profile was identified and risk management and principal component analysis were used to guide formulation development. Obtained dry powders for inhalation (DPIs) were evaluated in terms of SLMs size distribution, morphology, true density, drug content, solid state characterization studies, in vitro aerosol performance and in vitro drug release. SLMs micrographs indicated spherical, porous particles. Selected powders showed satisfactory aerosol performance with a mean mass aerodynamic diameter of around 3 µm and acceptable fine particle fraction (FPF). Addition of trehalose positively affected SLMs aerodynamic properties. The results of in vitro dissolution testing indicated that salbutamol sulfate release from the tested SLMs formulations was modified, in comparison to the raw drug release. In conclusion, SLMs in a form of DPIs were successfully developed and numerous factors that affects SLMs properties were identified in this study. Further research is required for full understanding of each factor's influence on SLMs properties and optimization of DPIs with maximized FPFs.


Assuntos
Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Administração por Inalação , Aerossóis , Portadores de Fármacos , Composição de Medicamentos , Lipídeos , Tamanho da Partícula , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...