Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816448

RESUMO

Antiviral agents are highly sought after. In this study, a novel alkylated decalin-type polyketide, alaspelunin, was isolated from the culture broth of the fungus Talaromyces speluncarum FMR 16671, and its structure was determined using spectroscopic analyses (1D/2D NMR and MS). The compound was condensed with alanine, and its absolute configuration was determined using Marfey's method. Furthermore, the antiviral activity of alaspelunin against various viruses was evaluated, and it was found to be effective against both severe acute respiratory syndrome coronavirus 2 and pseudorabies (Aujeszky's disease) virus, a pathogen affecting pigs. Our results suggest that this compound is a potential broad-spectrum antiviral agent.

2.
J Antibiot (Tokyo) ; 72(11): 793-799, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31341274

RESUMO

New hydroquinone derivatives bearing a vinyl alkyne, pestalotioquinols A and B, were isolated from a fungal culture broth of Pestalotiopsis microspora. The structures of these novel compounds were determined by interpretation of spectroscopic data (1D/2D NMR, MS, and IR), and the absolute configuration of the stereogenic center of pestalotioquinol A was assigned using the modified Mosher's method. Nerve growth factor-differentiated neuronal PC12 cells were pretreated with pestalotioquinols A and B and removed from the medium, and then treated with a generator of peroxynitrite (ONOO-), a reactive nitrogen species, to induce cell death. The cytotoxicity of the treated cells was assessed by measuring lactate dehydrogenase leakage. As a result, 1-3 µM pretreatment of pestalotioquinols A and B rescued neuronal PC12 cells from peroxynitrite-induced cytotoxicity and the protective activity was sustained after removing each compound from the medium. These results demonstrate that pestalotioquinol derivatives are a new class of hydroquinones possessing a vinyl alkyne and exhibiting relatively high neuroprotective effects.


Assuntos
Ascomicetos/metabolismo , Hidroquinonas/química , Hidroquinonas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Células PC12 , Ratos
3.
Plant Cell Physiol ; 47(7): 807-17, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16774930

RESUMO

cDNA for a major arbuscular mycorrhiza (AM)-inducible phosphate (Pi) transporter of Lotus japonicus, LjPT3, was isolated from Glomus mosseae-colonized roots. The LjPT3 transcript was expressed in arbuscule-containing cells of the inner cortex. The transport activity of the gene product was confirmed by the complementation of a yeast mutant that lacks high-affinity Pi transporters. In contrast to most AM-inducible Pi transporters thus far reported, LjPT3 has an amino acid sequence that has much in common with those of other members of the Pht1 family of plant Pi transporters, such as StPT3 of potato. To understand better the physiological role of this AM-inducible Pi transporter, knockdown transformants of the gene were prepared through hairy root transformation and RNA interference. Under Pi-limiting conditions, the transformants showed a reduction of Pi uptake via AM and growth retardation. The transformants also exhibited a decrease in G. mosseae arbuscules. Additionally, when Mesorhizobium loti was inoculated into the knockdown transformants in combination with G. mosseae, necrotic root nodules were observed. Based on these findings, we consider that the genetically engineered host plants had monitored insufficient Pi uptake via AM or low expression of LjPT3, excluding the existing fungi and rhizobia and/or preventing further development of the fungal and nodule structures.


Assuntos
Regulação da Expressão Gênica/genética , Lotus/genética , Micorrizas/genética , Proteínas de Transporte de Fosfato/genética , Simbiose/genética , Alphaproteobacteria/genética , Alphaproteobacteria/fisiologia , DNA de Plantas/genética , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Lotus/fisiologia , Dados de Sequência Molecular , Mutação/genética , Micorrizas/fisiologia , Proteínas de Transporte de Fosfato/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Plantas/genética , Simbiose/fisiologia
4.
Appl Microbiol Biotechnol ; 66(6): 648-54, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15538555

RESUMO

A filamentous fungus, Mortierella alpina 1S-4, is capable of producing not only arachidonic acid (AA; 20:4n-6) but also eicosapentaenoic acid (EPA; 20:5n-3) below a cultural temperature of 20 degrees C. Here, we describe the isolation and characterization of a gene (maw3) that encodes a novel omega3-desaturase from M. alpina 1S-4. Based on the conserved sequence information for M. alpina 1S-4 Delta12-desaturase and Saccharomyces kluyveri omega3-desaturase, the omega3-desaturase gene from M. alpina 1S-4 was cloned. Homology analysis of protein databases revealed that the amino acid sequence showed 51% identity, at the highest, with M. alpina 1S-4 Delta12-desaturase, whereas it exhibited 36% identity with Sac. kluyveri omega3-desaturase. The cloned cDNA was confirmed to encode the omega3-desaturase by its expression in the yeast Sac. cerevisiae. Analysis of the fatty acid composition of the yeast transformant demonstrated that 18-carbon and 20-carbon n-3 polyunsaturated fatty acids (PUFAs) were accumulated through conversion of exogenous 18-carbon and 20-carbon n-6 PUFAs. The substrate specificity of the M. alpina 1S-4 omega3-desaturase differs from those of the known fungal omega3-desaturases from Sac. kluyveri and Saprolegnia diclina. Plant, cyanobacterial and Sac. kluyveri omega3-desaturases desaturate 18-carbon n-6 PUFAs, Spr. diclina omega3-desaturase desaturates 20-carbon n-6 PUFAs and Caenorhabditis elegans omega3-desaturase prefers 18-carbon n-6 PUFAs as substrates rather than 20-carbon n-6 PUFAs. The substrate specificity of M. alpina 1S-4 omega3-desaturase is rather similar to that of C. elegans omega3-desaturase, but the M. alpina omega3-desaturase can more effectively convert AA into EPA when expressed in yeast. The M. alpina 1S-4 omega3-desaturase is the first known fungal desaturase that uses both 18-carbon and 20-carbon n-6 PUFAs as substrates.


Assuntos
Ácidos Graxos Dessaturases/isolamento & purificação , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Mortierella/enzimologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Clonagem Molecular , DNA Fúngico/química , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Dados de Sequência Molecular , Filogenia , Saccharomyces/química , Saccharomyces/genética , Saccharomyces/metabolismo , Saprolegnia/enzimologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...