Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271056

RESUMO

The low stretchability of plain membranes restricts the sensitivity of conventional diaphragm-based pressure and inflatable piezoelectric sensors. Using theoretical and computational tools, we characterized current limitations and explored metamaterial-inspired membranes (MetaMems) to resolve these issues. This paper develops two MetaMem pressure sensors (MPSs) to enrich the sensitivity and stretchability of the conventional sensors. Two auxetic hexagonal and kirigami honeycombs are proposed to create a negative Poisson's ratio (NPR) in the MetaMems which enables them to expand the piezo-element of sensors in both longitudinal and transverse directions much better, and consequently provides the MPSs' diaphragm a higher capability for flexural deformation. Polyvinylidene fluoride (PVDF) and polycarbonate (PC) are considered as the preferable materials for the piezo-element and MetaMem, respectively. A finite element analysis was conducted to investigate the stretchability behavior of the MetaMems and study its effect on the PVDF's polarization and sensor sensitivity. The results obtained from theoretical analysis and numerical simulations demonstrate that the proposed MetaMems enhance the sensitivity of pressure sensors up to 3.8 times more than an equivalent conventional sensor with a plain membrane. This paper introduces a new class of flexible MetaMems to advance wearable piezoelectric metasensor technologies.


Assuntos
Dispositivos Eletrônicos Vestíveis , Análise de Elementos Finitos
2.
ACS Appl Mater Interfaces ; 11(29): 26421-26432, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31148453

RESUMO

We developed and presented highly sensitive solvent-free silver nanoparticle strain sensors fabricated using the aerodynamically focused nanoparticle (AFN) printer. The nanoparticles were printed in various conductive patterns. We explored how printer scan velocity affected pattern geometry and sensor sensitivity. The strain sensors were highly sensitive; the scan velocity afforded tunable sensitivity; and an analytical model predicted the behavior well under low-strain (<0.4%) conditions. We describe a prototype sensor that reliably measured composite beam tensile strain. We further enhanced the sensitivity by creating mechanical cracks, facilitating small dynamic signal measurements. The linear sensitivity of the sensor could be tuned from 18.60 to 290.62 by varying the scan velocity from 2 to 40 µm/s. The cracked sensor afforded the greatest sensitivity (1056) and captured small vibrations from a stringed instrument. We report highly sensitive and reliable measurements of dynamic behavior with simple tunability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...