Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 16(8): 4819-24, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27462825

RESUMO

The electric field effect is a useful means of elucidating intrinsic material properties as well as for designing functional devices. The electric-double-layer transistor (EDLT) enables the control of carrier density in a wide range, which is recently proved to be an effective tool for the investigation of thermoelectric properties. Here, we report the gate-tuning of thermoelectric power in a black phosphorus (BP) single crystal flake with the thickness of 40 nm. Using an EDLT configuration, we successfully control the thermoelectric power (S) and find that the S of ion-gated BP reached +510 µV/K at 210 K in the hole depleted state, which is much higher than the reported bulk single crystal value of +340 µV/K at 300 K. We compared this experimental data with the first-principles-based calculation and found that this enhancement is qualitatively explained by the effective thinning of the conduction channel of the BP flake and nonuniformity of the channel owing to the gate operation in a depletion mode. Our results provide new opportunities for further engineering BP as a thermoelectric material in nanoscale.

2.
Small ; 12(25): 3388-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27191367

RESUMO

Thermoelectric detection of a multi-subband density of states in semiconducting and metallic single-walled carbon nanotubes is demonstrated by scanning the Fermi energy from electron-doped to hole-doped regions. The Fermi energy is systematically controlled by utilizing the strong electric field induced in electric-double-layer transistor configurations, resulting in the optimization of the thermoelectric power factor.

3.
Proc Natl Acad Sci U S A ; 113(23): 6438-43, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27222585

RESUMO

Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to [Formula: see text] 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities.


Assuntos
Eletricidade , Óxido de Zinco/química , Elétrons , Gases , Temperatura Alta , Modelos Teóricos , Semicondutores
4.
Nano Lett ; 16(3): 2061-5, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26841275

RESUMO

We report an electric field tuning of the thermopower in ultrathin WSe2 single crystals over a wide range of carrier concentration by using electric double-layer (EDL) technique. We succeeded in the optimization of power factor not only in the hole but also in the electron side, which has never been chemically accessed. The maximized values of power factor are one-order larger than that obtained by changing chemical composition, reflecting the clean nature of electrostatic doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...