Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(2): 572-578, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34596320

RESUMO

BACKGROUND: Dusky cotton bug, Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae) is an important pest of cotton and causing economic losses to this crop. It also remains active round the year, infesting a number of host plants. Spirotetramat is a systemic insecticide and is effective against many sucking insect pests. A field collected population of O. hyalinipennis was reared in the laboratory under continuous spirotetramat selection pressure for 21 generations for the development of resistance to spirotetramat. The Spiro-Sel population was further reared for seven generations without insecticide exposure to assess the stability of spirotetramat resistance. Leaf dip method was used for the bioassays and selection. In this study, the impact of spirotetramat resistance on its stability and life history traits of Spiro-Sel, C1 (15 Spiro-Sel♀ × 15 UNSEL ♂) and C2 (15 Spiro-Sel♂ × 15 UNSEL ♀) O. hyalinipennis was assessed. RESULTS: Spiro-Sel (G21 ) population developed 2333-fold and 20.83-fold resistance compared with the susceptible and unselected (UNSEL) populations, respectively. Resistance to spirotetramat was unstable after seven generations (G28 ) when reared without exposure to any insecticide. A significant reduction in overall nymphal survival, fecundity, egg hatching and net reproductive rate of Spiro-Sel population was observed when compared with UNSEL population. Intrinsic rate of natural increase, biotic potential and mean relative growth rate were also lower in Spiro-Sel population compared to UNSEL population. The Spiro-Sel, C1 and C2 population had a relative fitness of 0.44, 0.51 and 0.44, respectively. CONCLUSION: Results of our study suggested that fitness cost is involved in the development of spirotetramat resistance. Unstable resistance and high fitness cost may provide great benefits to limit the evolution of resistance to spirotetramat in O. hyalinipennis. © 2021 Society of Chemical Industry.


Assuntos
Compostos Aza , Hemípteros , Heterópteros , Inseticidas , Compostos de Espiro , Animais , Compostos Aza/farmacologia , Hemípteros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Compostos de Espiro/farmacologia
2.
Environ Sci Pollut Res Int ; 25(17): 17033-17037, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29633191

RESUMO

Red cotton bug, Dysdercus koenigii (Hemiptera: Pyrrhocoridae), has become the major insect pest of various crops, including cotton, and thereby reducing the yield qualitatively and quantitatively and synthetic insecticides belonging to different groups are the major control agents for such insect pests. A laboratory experiment was carried out to evaluate the effect of different conventional insecticides, i.e., imidacloprid, deltamethrin, lambda cyhalothrin, gamma cyhalothrin and cyfluthirn on haemocytes of D. koenigii. The individuals were exposed to insecticides separately and data was recorded after 30 and 60 min of the exposure. The findings of current study depicted chlorpyrifos to be more effective and significant alterations in total haemocyte counts and differential haemocyte counts were observed in the cyfluthirn treated D. koenigii. In addition to this, cell structure was also disrupted as an immune response. Similar studies would also be helpful to understand the defence mechanisms of insects against the xenobiotics which will help to device efficient management tools for D. koenigii.


Assuntos
Clorpirifos/farmacologia , Hemípteros/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Inseticidas/farmacologia , Neonicotinoides/química , Nitrilas/química , Nitrocompostos/química , Piretrinas/química , Animais
3.
Vet Parasitol ; 223: 71-6, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27198780

RESUMO

Fipronil, a phenyl-pyrazole insecticide has been used frequently for the control of disease vector house flies, Musca domestica L., (Diptera: Muscidae) worldwide including Pakistan. This experiment was performed to determine the selection and assessment of fipronil resistance evolution along with cross resistance to other three insecticides. After 26 generations of selection, the house fly strain developed 430-fold resistance to fipronil compared to a susceptible strain. Realized heritability (h(2)) of resistance to fipronil was 0.05. The projected rate of resistance development revealed that if 30-90% house flies were selected then a tenfold increase in lethal concentration 50 happened after 95.51-26.59 generations for fipronil (h(2)=0.05, Slope=2.34). At similar slope, if h(2)=0.15, then 31.84-8.86 generations are required for tenfold increase in LC50 at 30-90% selection intensity, respectively. Likewise, if h(2)=0.25, then similar would occur in 19.10-5.32 generations. Differences in any of the variable would affect the rate of resistance development. Selection with fipronil did not increase the level of resistance to lambda-cyhalothrin, profenofos and indoxacarb, suggesting no cross resistance to these insecticides. The results of our study concluded that house flies have the potential to develop resistances following continued selection pressure with fipronil.


Assuntos
Moscas Domésticas/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Pirazóis/farmacologia , Animais , Moscas Domésticas/genética , Resistência a Inseticidas/genética
4.
Pestic Biochem Physiol ; 119: 42-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25868815

RESUMO

Cotton mealybug, Phenacoccus solenopsis Tinsley, is a serious pest of cotton and other crops and infestation by this pest results in yield losses that affect the economy of Pakistan. Various groups of insecticides have been used to control this pest but resistance development is a major factor that inhibits its control in the field. Chlorpyrifos is a common insecticide used against many pests including P. solenopsis. The present experiment was designed to assess the genetics and mechanism of chlorpyrifos resistance and to develop a better resistance management strategy and assess the genetics and mechanism of chlorpyrifos resistance. Before selection, the field strain showed 3.1-fold resistance compared to the susceptible strain (CSS). After 8 rounds of selection with chlorpyrifos, a selected population developed a 191.0-fold resistance compared to the CSS. The LC50 values of F1 (CRR ♀ × CSS ♂) and F1(†) (CRR ♂ × CSS ♀) strains were not significantly different and dominance (DLC) values were 0.42 and 0.55. Reciprocal crosses between chlorpyrifos susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive. The monogenic model of fit test and calculation of number of genes segregating in the chlorpyrifos resistant strain demonstrated that resistance is controlled by multiple genes. A value of 0.59 was calculated for realized heritability for chlorpyrifos resistance. Synergism bioassays with piperonyl butoxide and S, S, S-butyl phosphorotrithioate showed that chlorpyrifos resistance was associated with microsomal oxidases and esterases. It was concluded that chlorpyrifos resistance in P. solenopsis was autosomally inherited, incompletely recessive and polygenic. These findings would be helpful to improve the management of P. solenopsis.


Assuntos
Clorpirifos/farmacologia , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Animais , Feminino , Hemípteros/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...