Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1268949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025066

RESUMO

Introduction: Natural antioxidants are vital to promote health and treat critical disease conditions in the modern healthcare system. This work adds to the index of natural medicines by exploring the antioxidant potential of Dodonaea viscosa Jacq. (Plant-DV). Material and Methods: The aqueous extract of leaves and flower-containing seeds from plant-DV in freshly prepared phosphate buffer is evaluated for antioxidant potential. In vitro antioxidant potential of the nascent and oxidatively stressed extracts was analyzed through glutathione (GSH) assay, hydrogen peroxide (H2O2) scavenging effect, glutathione-S-transferase (GST) assay, and catalase (CAT) activity. In vivo therapeutic assessment is performed in Wistar Albino rats using vitamin C as a positive control. The livers and kidneys of individual animals are probed for glutathione, glutathione-S-transferase, and catalase activities. Results: flower-containing seeds have GSH contents (59.61 µM) and leaves (32.87 µM) in the fresh aqueous extracts. The hydrogen peroxide scavenging effect of leaves is superior to flower-containing seeds with 17.25% and 14.18% respectively after 30 min incubation. However, oxidatively stressed extracts with Ag(I) and Hg(II) show declining GSH and GST levels. The plant extracts are non-toxic in rats at 5000 mg/Kg body weight. Liver and kidneys homogenate reveal an increase in GSH, GST, and CAT levels after treatment with 150 ± 2 mg/kg and 300 ± 2 mg/kg body weight plant extract compared with normal saline-treated negative and vitamin C treated positive control. Discussion: The crude aqueous extracts of leaves and flower-containing seeds of plant-DV show promising antioxidant potential both in in vitro and in vivo evaluation.

2.
PLoS One ; 17(5): e0265026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35503769

RESUMO

The bioconvection flow of tiny fluid conveying the nanoparticles has been investigated between two concentric cylinders. The contribution of Lorenz force is also focused to inspect the bioconvection thermal transport of tiny particles. The tiny particles are assumed to flow between two concentric cylinders of different radii. The first cylinder remains at rest while flow is induced due to second cylinder which rotates with uniform velocity. Furthermore, the movement of tiny particles follows the principle of thermophoresis and Brownian motion as a part of thermal and mass gradient. Similarly, the gyro-tactic microorganisms swim in the nanofluid as a response to the density gradient and constitute bio-convection. The problem is modeled by using the certain laws. The numerical outcomes are computed by using RKF -45 method. The graphical simulations are performed for flow parameters with specific range like 1≤Re≤5, 1≤Ha≤5, 0.5≤Nt≤2.5, 1≤Nb≤3, 0.2≤Sc≤1.8, 0.2≤Pe≤1.0 and 0.2≤Ω≤1.0. It is observed that the flow velocity decreases with the increase in the Hartmann number that signifies the magnetic field. This outcome indicates that the flow velocity can be controlled externally through the magnetic field. Also, the increase in the Schmidt numbers increases the nanoparticle concentration and the motile density.


Assuntos
Convecção , Nanopartículas , Campos Magnéticos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...