Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17397, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833400

RESUMO

This study presents a parametric analysis of the steady-state temperature elevation in rat skin models due to millimeter wave exposure at frequencies from 6-100 GHz. The statistical data of the thickness of skin layers, namely epidermis, dermis, dermal white adipose tissue, and panniculus carnosus, were measured for the first time using the excised tissues of real male Sprague-Dawley rats. Based on the precise structure obtained from the histological analysis of rat skin, we solve the bioheat transfer equation to investigate the effects of changes in parameters, such as body parts and thermal constants, on the absorbed power density and temperature elevation of biological tissues. Owing to the notably thin dermal white adipose tissue layer, the surface temperature elevation in the rat head and dorsal skin at 6-100 GHz is 52.6-32.3% and 83.3-58.8% of the average values of different human skin models, respectively. Our results also reveal that the surface temperature elevation of rat skin may correlate with the tissue thickness and deep blood perfusion rates.


Assuntos
Modelos Biológicos , Temperatura Cutânea , Masculino , Animais , Ratos , Humanos , Ratos Sprague-Dawley , Pele , Doses de Radiação
2.
Front Public Health ; 11: 1225896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732093

RESUMO

Introduction: Limited information is available on the biological effects of whole-body exposure to quasi-millimeter waves (qMMW). The aim of the present study was to determine the intensity of exposure to increase body temperature and investigate whether thermoregulation, including changes in skin blood flow, is induced in rats under whole-body exposure to qMMW. Methods: The backs of conscious rats were extensively exposed to 28 GHz qMMW at absorbed power densities of 0, 122, and 237 W/m2 for 40 minutes. Temperature changes in three regions (dorsal and tail skin, and rectum) and blood flow in the dorsal and tail skin were measured simultaneously using fiber-optic probes. Results: Intensity-dependent temperature increases were observed in the dorsal skin and the rectum. In addition, skin blood flow was altered in the tail but not in the dorsum, accompanied by an increase in rectal temperature and resulting in an increase in tail skin temperature. Discussion: These findings suggest that whole-body exposure to qMMW drives thermoregulation to transport and dissipate heat generated on the exposed body surface. Despite the large differences in size and physiology between humans and rats, our findings may be helpful for discussing the operational health-effect thresholds in the standardization of international exposure guidelines.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Humanos , Animais , Ratos
3.
In Vivo ; 37(5): 2092-2099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652500

RESUMO

BACKGROUND/AIM: The widespread use of fifth-generation 5G millimeter-waves (MMW) generates concern about potential adverse health effects. The latest international guidelines for MMW exposure adopt an absorbed power density (APD) of 200 W/m2 to avoid a local temperature rise of 5°C in human tissues as an operational adverse health effect threshold. However, because APD is estimated by simulations using human tissue models, it is unknown whether a similar value can be confirmed for living tissues. The aim of this study was to investigate the relationship between APD and skin temperature rise in vivo, and to validate the estimated values. MATERIALS AND METHODS: The rat dorsal skin was locally exposed to a 26.5 GHz quasi-MMW (qMMW) for 18 min using a patch antenna. The qMMW exposure intensities estimated by dosimetry were set to 0-500 W/m2 of APD. The temperatures in the dorsal skin and rectum were simultaneously measured during exposure. RESULTS: The qMMW-induced local temperature increase at different sites. The dorsal skin temperature increased by approximately 11.3°C at a maximum intensity of 500 W/m2, but the rectal temperature increased by only 0.6°C, indicating highly localized effects of exposure to rats. A significant correlation was observed between APD and skin temperature rise. The relationship provided a linear regression model, and a temperature rise of less than 5°C was estimated in the skin exposed to 200 W/m2 of APD. CONCLUSION: These results suggest that the operational threshold for the MMW exposure guidelines is valid under the present experimental conditions using rats.


Assuntos
Pele , Humanos , Ratos , Animais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...