Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(9): 8675-8684, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706277

RESUMO

Laccases produced by Leucoagaricus gongylophorus act in lignocellulose degradation and detoxification processes. Therefore, the use of L. gongylophorus laccase (Lac1Lg) was proposed in this work for degradation of anthracene and others polycyclic aromatic hydrocarbons without the use of mediators. Degradation reactions were performed in buffer aqueous solution with 10 ppm of anthracene and other PAHs, Tween-20 in 0.25% v/v and a laccase preparation of 50 U. The optimum condition (pH 6.0 and 30 °C) was determined by response surface methodology with an excellent coefficient of determination (R2) of 0.97 and an adjusted coefficient of determination (R2adj) of 0.93. In addition, the employment of the mediator ABTS decreased the anthracene biodegradation from 44 ± 1% to 30 ± 1%. This optimum pH of 6.0 suggests that the reaction occurs by a hydrogen atom transfer mechanism. Additionally, in 24 h Lac1Lg biodegraded 72 ± 1% anthracene, 40 ± 3% fluorene and 25 ± 3% phenanthrene. The yellow laccase from L. gongylophorus biodegraded anthracene and produced anthrone and anthraquinone, which are interesting compounds for industrial applications. Moreover, this enzyme also biodegraded the PAHs phenanthrene and fluorene justifying the study of Lac1Lg for bioremediation of these compounds in the environment.


Assuntos
Agaricales/metabolismo , Antracenos/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Lacase/metabolismo , Antraquinonas , Fluorenos , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
2.
J Nanosci Nanotechnol ; 16(6): 6526-34, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427747

RESUMO

In this paper, we present the optimization of porous anodic alumina membranes for ultrafiltration prepared by anodically oxidized aluminum foils. The membranes were characterized by field-emission scanning electron microscopy to measure the pore diameter and the membrane thicknesses. The liquid fluxes were estimated through gas permeability measurements using Darcy's and Forchheimers equations. A 2(3) factorial design we used to optimize the membrane properties: pore diameter, membrane thickness, and liquid flux using as control variables the applied current density, solution composition and concentration. It was observed that the most import variables to control the pore diameter were current density and electrolyte composition. After the anodization both, metallic aluminum substrate and the barrier layer of alumina were removed using adequate solutions to obtain the free standing membrane. Then, Escherichia coli a common bacterial contamination of drinking water was removed using these PAA membranes with 100% of efficiency to obtain bacteria-free water.


Assuntos
Óxido de Alumínio/química , Escherichia coli/isolamento & purificação , Membranas Artificiais , Ultrafiltração/métodos , Eletrodos , Hidrodinâmica , Porosidade , Ultrafiltração/instrumentação
3.
Springerplus ; 4: 654, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543788

RESUMO

In this work we have identified, using mass spectrometry, two laccases produced by Leucoagaricus gongylophorus. One of them, Lac1Lg, was isolated, purified and characterized. Lac1Lg, a monomeric enzyme, was studied using ABTS and syringaldazine substrates. Lac1Lg presented kcat/Km almost threefold higher for syringaldazine than for ABTS, showing a higher catalytic efficiency of Lac1Lg for syringaldazine. The interference of several metal ions and substances in the laccase activity were evaluated. Lac1Lg did not absorb at 600 nm, which is a characteristic of so-called yellow laccases. Lac1Lg also was able to oxidize non-phenolic substrate (anthracene) in the absence of an exogenous mediator, showing that the enzyme has potential to explore in biotechnological processes. Our Lac1Lg three-dimensional molecular model, constructed using homology modeling, showed that the Lac1Lg catalytic site is very closed to blue laccases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...