Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PPAR Res ; 2024: 5518933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899160

RESUMO

We have previously reported the identification of a novel splicing variant of the mouse peroxisome proliferator-activated receptor-γ (Pparγ), referred to as Pparγ1sv. This variant, encoding the PPARγ1 protein, is abundantly and ubiquitously expressed, playing a crucial role in adipogenesis. Pparγ1sv possesses a unique promoter and 5' untranslated region (5'UTR), distinct from those of the canonical mouse Pparγ1 and Pparγ2 mRNAs. We observed a significant increase in DNA methylation at two CpG sites within the proximal promoter region (-733 to -76) of Pparγ1sv during adipocyte differentiation. Concurrently, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) using antibodies against H3K4me3 and H3K27ac indicated marked elevations in both methylation and acetylation of histone H3, while the repressive histone mark H3K9me2 significantly decreased, at the transcription start sites of both Pparγ1sv and Pparγ2 following differentiation. Knocking down Pparγ1sv using specific siRNA also led to a decrease in Pparγ2 mRNA and PPARγ2 protein levels; conversely, knocking down Pparγ2 resulted in reduced Pparγ1sv mRNA and PPARγ1 protein levels, suggesting synergistic transcriptional regulation of Pparγ1sv and Pparγ2 during adipogenesis. Furthermore, our experiments utilizing the CRISPR-Cas9 system identified crucial PPARγ-binding sites within the Pparγ gene locus, underscoring their significance in adipogenesis. Based on these findings, we propose a model of positive feedback regulation for Pparγ1sv and Pparγ2 expression during the adipocyte differentiation process in 3T3-L1 cells.

2.
Dev Dyn ; 253(4): 404-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37850839

RESUMO

BACKGROUND: Elongation of the spinal cord is dependent on neural development from neuromesodermal progenitors in the tail bud. We previously showed the involvement of the Oct4-type gene, pou5f3, in this process in zebrafish mainly by dominant-interference gene induction, but, to compensate for the limitation of this transgene approach, mutant analysis was indispensable. pou5f3 involvement in the signaling pathways was another unsolved question. RESULTS: We examined the phenotypes of pou5f3 mutants and the effects of Pou5f3 activation by the tamoxifen-ERT2 system in the posterior neural tube, together confirming the involvement of pou5f3. The reporter assays using P19 cells implicated tail bud-related transcription factors in pou5f3 expression. Regulation of tail bud development by retinoic acid (RA) signaling was confirmed by treatment of embryos with RA and the synthesis inhibitor, and in vitro reporter assays further showed that RA signaling regulated pou5f3 expression. Importantly, the expression of the RA degradation enzyme gene, cyp26a1, was down-regulated in embryos with disrupted pou5f3 activity. CONCLUSIONS: The involvement of pou5f3 in spinal cord extension was supported by using mutants and the gain-of-function approach. Our findings further suggest that pou5f3 regulates the RA level, contributing to neurogenesis in the posterior neural tube.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Pathol Res Pract ; 252: 154948, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977034

RESUMO

Lung cancer, known for its high mortality rates and poor prognosis, remains one of the most prevalent cancer types. Early detection and effective treatment methods are crucial for improving survival rates. Non-small cell lung cancer (NSCLC) accounts for approximately 85 % of all lung cancer cases. Long non-coding RNAs (lncRNAs), which play vital roles in various biological processes, have been implicated in the development of cancer and can impact key therapeutic targets in different cancer types. In NSCLC, the dysregulation of specific lncRNAs, such as MALAT1 and NORAD, has been associated with neoplastic initiation, progression, metastasis, tumor angiogenesis, chemoresistance, and genomic instability. Both MALAT1 and NORAD directly regulate the expression of the transcription factor E2F1, thereby influencing cell cycle progression. Additionally, MALAT1 has been reported to affect the expression of p53 target genes, leading to cell cycle progression through the repression of p53 promoter activity. NORAD, on the other hand, is indirectly regulated by p53. The AT-rich interaction domain (ARID) family of DNA-binding proteins, particularly ARID3A and ARID3B, are involved in various biological processes such as cell proliferation, differentiation, and development. They also play significant roles in E2F-dependent transcription and are transcriptional targets of p53. The intricate balance between promoting cellular proliferation through the pRB-E2F pathway and inducing growth arrest through the p53 pathway underscores the crucial regulatory role of ARID3A, ARID3B, and their interaction with lncRNAs MALAT1 and NORAD. In this study, we aimed to investigate the potential interactive and functional connections among ARID3A, ARID3B, MALAT1, and NORAD in NSCLC, considering their involvement in the pRB-E2F and p53 pathways. Our findings strongly suggest that ARID3A and ARID3B play a regulatory role in controlling MALAT1 and NORAD in NSCLC. Specifically, our study demonstrates that the activities of MALAT1 and NORAD were markedly increased upon the overexpression of ARID3A and ARID3B. Therefore, we can conclude that ARID3A and ARID3B likely contribute significantly to the oncogenic functions of MALAT1 and NORAD in NSCLC. Consequently, targeting ARID3A and ARID3B could hold promise as a therapeutic approach in NSCLC, given their direct control over the expression of MALAT1 and NORAD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
J Vis Exp ; (197)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37522726

RESUMO

Conventional bone regeneration therapy using mesenchymal stem cells (MSCs) is difficult to apply to bone defects larger than the critical size because it does not have a mechanism to induce angiogenesis. Implanting artificial cartilage tissue fabricated from MSCs induces angiogenesis and bone formation in vivo via endochondral ossification (ECO). Therefore, this ECO-mediated approach may be a promising bone regeneration therapy in the future. An important aspect of the clinical application of this ECO-mediated approach is establishing a protocol for preparing enough cartilage to be implanted to repair the bone defect. It is especially not practical to design a single mass of grafted cartilage of a size that conforms to the shape of the actual bone defect. Therefore, the cartilage to be transplanted must have the property of forming bone integrally when multiple pieces are implanted. Hydrogels may be an attractive tool for scaling up tissue-engineered grafts for endochondral ossification to meet clinical requirements. Although many naturally derived hydrogels support MSC cartilage formation in vitro and ECO in vivo, the optimal scaffold material to meet the needs of clinical applications has yet to be determined. Hyaluronic acid (HA) is a crucial component of the cartilage extracellular matrix and is a biodegradable and biocompatible polysaccharide. Here, we show that HA hydrogels have excellent properties to support in vitro differentiation of MSC-based cartilage tissue and promote endochondral bone formation in vivo.

5.
FEBS J ; 290(15): 3843-3857, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37002713

RESUMO

We previously developed a stress-induced premature senescence (SIPS) model in which normal human fibroblast MRC-5 cells were treated with either the proteasome inhibitor MG132 or the vacuolar-type ATPase inhibitor bafilomycin A1 (BAFA1). To clarify the involvement of mitochondrial function in our SIPS model, MRC-5 cells were treated with MG132 or BAFA1 along with an inhibitor targeting either the electron transport chain complex I or complex III, or with a mitochondrial uncoupler. SIPS induced by MG132 or BAFA1 was significantly attenuated by short-term co-treatment with the complex III inhibitor, antimycin A (AA), but not the complex I inhibitor, rotenone or the mitochondrial uncoupler, carbonyl cyanide 3-chlorophenylhydrazone. By co-treatment with AA, mitochondrial and intracellular reactive oxygen species levels, accumulation of protein aggregates and mitochondrial unfolded protein responses (UPRmt ) were remarkably suppressed. Furthermore, AA co-treatment suppressed the hyperpolarization of the mitochondrial membrane and the induction of mitophagy observed in MG132-treated cells and enhanced mitochondrial biogenesis. These findings provide evidence that the temporal inhibition of mitochondrial respiration exerts protective effects against the progression of premature senescence caused by impaired proteostasis.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Proteostase , Humanos , Transporte de Elétrons , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular , Fibroblastos/metabolismo
6.
PLoS One ; 18(2): e0281345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730328

RESUMO

Engineered cartilage tissue from differentiated mesenchymal stem cells (MSCs) can generate bone in vivo through endochondral ossification (ECO). This ECO-mediated approach has the potential to circumvent the severe problems associated with conventional MSC-based bone tissue engineering techniques that lack mechanisms to induce angiogenesis. Hyaluronic acid (HA) is a key component in the cartilage extracellular matrix. However, the ECO-supporting properties of HA remain largely unclear. This study aimed to compare the ability of HA and collagen hydrogels to support in vitro differentiation of MSC-based hypertrophic cartilage tissues and to promote endochondral bone formation in vivo. Following the chondrogenic and hypertrophic differentiation in vitro, both HA and collagen constructs accumulated sulfated glycosaminoglycan (sGAG) and type 1, type II, and type X collagen. However, HA hydrogels exhibited a more uniform distribution of sGAG, type 1 collagen, type X collagen, and osteocalcin proteins; in addition, the cells embedded in the hydrogels had more rounded cell morphologies than those in the collagen constructs. At week 5 of in vitro culture, two to three constructs were implanted into a subcutaneous pocket in nude mice and harvested after 4 and 8 weeks. Both HA and collagen constructs promoted endochondral bone formation with vascularization and bone marrow development; however, the HA constructs fused to form integrated bone tissues and the bone marrow developed along the space between the two adhered grafts in all implanted pockets (n = 5). In the collagen constructs, the integration was observed in 40% of the pockets (n = 5). Microcomputer CT analysis revealed that the bone volume of HA constructs was larger than that of collagen constructs. In conclusion, compared to collagen hydrogels, HA hydrogels had superior potential to generate integrated bone with vascularization and bone marrow development. This study provides valuable insights for applying ECO-mediated bone tissue engineering approaches for the repair of critical-sized bone defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Animais , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Camundongos Nus , Engenharia Tecidual/métodos , Colágeno/metabolismo , Condrogênese
7.
Cell Rep ; 39(6): 110787, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545046

RESUMO

The mechanisms that generate robust ionic oscillation in circadian pacemaker neurons are under investigation. Here, we demonstrate critical functions of the mitochondrial cation antiporter leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1), which exchanges K+/H+ in Drosophila and Ca2+/H+ in mammals, in circadian pacemaker neurons. Letm1 knockdown in Drosophila pacemaker neurons reduced circadian cytosolic H+ rhythms and prolonged nuclear PERIOD/TIMELESS expression rhythms and locomotor activity rhythms. In rat pacemaker neurons in the hypothalamic suprachiasmatic nucleus (SCN), circadian rhythms in cytosolic Ca2+ and Bmal1 transcription were dampened by Letm1 knockdown. Mitochondrial Ca2+ uptake peaks late during the day were also observed in rat SCN neurons following photolytic elevation of cytosolic Ca2+. Since cation transport by LETM1 is coupled to mitochondrial energy synthesis, we propose that LETM1 integrates metabolic, ionic, and molecular clock rhythms in the central clock system in both invertebrates and vertebrates.


Assuntos
Neurônios , Núcleo Supraquiasmático , Animais , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Mamíferos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Ratos , Núcleo Supraquiasmático/metabolismo
8.
FEBS J ; 289(6): 1650-1667, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34689411

RESUMO

Proteolytic activity declines with age, resulting in the accumulation of aggregated proteins in aged organisms. To investigate how disturbance in proteostasis causes cellular senescence, we developed a stress-induced premature senescence (SIPS) model, in which normal human fibroblast MRC-5 cells were treated with the proteasome inhibitor MG132 or the vacuolar-type ATPase inhibitor bafilomycin A1 (BAFA1) for 5 days. Time-course studies revealed a significant increase in intracellular reactive oxygen species (ROS) and mitochondrial superoxide during and after drug treatment. Mitochondrial membrane potential initially decreased, suggesting temporal mitochondrial dysfunction during drug treatment, but was restored along with mitochondrial accumulation after drug treatment. AMP-activated protein kinase alpha was notably activated during treatment; thereafter, intracellular ATP levels significantly increased. SIPS induction by MG132 or BAFA1 was partially attenuated by co-treatment with vitamin E or rapamycin, in which the levels of ROS, mitochondrial accumulation, and protein aggregates were suppressed, implying the critical involvement of oxidative stress and mitochondrial function in SIPS progression. Rapamycin co-treatment also augmented the expression of HSP70 and activation of AKT, which could recover proteostasis and promote cell survival, respectively. Our study proposes a possible pathway from the disturbed proteostasis to cellular senescence via excess ROS production as well as functional and quantitative changes in mitochondria.


Assuntos
Senescência Celular , Proteostase , Idoso , Fibroblastos/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirolimo
9.
J Biochem ; 171(3): 287-294, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878533

RESUMO

The five ß-like globin genes (ε, Gγ, Aγ, δ and ß) at the human ß-globin gene locus are known to be expressed at specific developmental stages, although details of the underlying mechanism remain to be uncovered. Here we used an in vitro transcription assay to clarify the mechanisms that control this gene expression. We first tested nuclear RNA from HeLa cells using RT-qPCR and discovered a long noncoding RNAs (lncRNAs) within a 5.2-kb region beginning 4.4 kb downstream of the ß-globin gene coding region. We investigated nuclear RNA from K562 cells using a primer-extension assay and determined the transcription start sites (TSSs) of these lncRNAs. To clarify their functional role, we performed knockdown (KD) of these lncRNAs in K562 cells. Hydroxyurea (HU), which induces differentiation of K562 cells, increased haemoglobin peptide production, and the effect was enhanced by KD of these lncRNAs, which also enhanced upregulation of the γ-globin expression induced by HU. To confirm these results, we performed an in vitro transcription assay. Noncoding single-stranded RNAs inhibited ß-globin expression, which was upregulated by GATA1. Furthermore, lncRNAs interacted with GATA1 without sequence specificity and inhibited its binding to its target DNA response element in vitro. Our results suggest that lncRNAs downstream of the ß-globin gene locus are key factors regulating globin gene expression.


Assuntos
RNA Longo não Codificante , Expressão Gênica , Células HeLa , Humanos , RNA Longo não Codificante/genética , Globinas beta/genética , gama-Globinas/genética , gama-Globinas/metabolismo
10.
Biochem Biophys Res Commun ; 585: 89-95, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34801937

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor which has unclear pathobiology. Hence, enlightening the exact molecular mechanism underlying osteosarcoma progression is crucial for developing new treatment strategies. One member of the ARID family of DNA binding proteins is ARID3A that is implicated in osteosarcoma pathogenesis. ARID3A could bind E2F1 and regulate the transcription of E2F1 targets. At the same time, BECN1 is a well-characterized autophagy regulator gene that is a direct target of E2F1. The present study aimed to investigate the effect of ARID3A on the expression of BECN1 in osteosarcoma cells. First, we determined gene expression levels of ARID3A, BECN1, and E2F1 in U-2 OS by qPCR and confirmed with online datasets from GEO database. In addition, the prognostic value of these genes was also evaluated from Kaplan-Meier plotter database. Next, ARID3A was overexpressed and silenced in order to investigate the effect of ARID3A on BECN1 expression and proliferation of U-2 OS cells. Our results demonstrated that BECN1 was negatively correlated with E2F1 and positively correlated with ARID3A based on initial expression and prognostic effect in OS. Overexpression of ARID3A upregulated BECN1 while silenced ARID3A downregulated BECN1 expression in U-2 OS cells. Additionally, silencing of ARID3A promoted colony formation and proliferation, whereas overexpression of ARID3A suppressed colony formation and proliferation of U-2 OS cells. Taken together, these results indicate that ARID3A could function as tumor suppressor and affect the expression level of BECN1 in U-2 OS cells.


Assuntos
Autofagia/genética , Proteína Beclina-1/genética , Neoplasias Ósseas/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/genética , Fatores de Transcrição/genética , Sequência de Bases , Sítios de Ligação/genética , Neoplasias Ósseas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Osteossarcoma/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Dev Growth Differ ; 63(6): 306-322, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34331767

RESUMO

In vertebrate embryogenesis, elongation of the posterior body is driven by de novo production of the axial and paraxial mesoderm as well as the neural tube at the posterior end. This process is presumed to depend on the stem cell-like population in the tail bud region, but the details of the gene regulatory network involved are unknown. Previous studies suggested the involvement of pou5f3, an Oct4-type POU gene in zebrafish, in axial elongation. In the present study, we first found that pou5f3 is expressed mainly in the dorsal region of the tail bud immediately after gastrulation, and that this expression is restricted to the posterior-most region of the elongating neural tube during somitogenesis. This pou5f3 expression was complementary to the broad expression of sox3 in the neural tube, and formed a sharp boundary with specific expression of tbxta (orthologue of mammalian T/Brachyury) in the tail bud, implicating pou5f3 in the specification of tail bud-derived cells toward neural differentiation in the spinal cord. When pou5f3 was functionally impaired after gastrulation by induction of a dominant-interfering pou5f3 mutant gene (en-pou5f3), trunk and tail elongation were markedly disturbed at distinct positions along the axis depending on the stage. This finding showed involvement of pou5f3 in de novo generation of the body from the tail bud. Conditional functional abrogation also showed that pou5f3 downregulates mesoderm-forming genes but promotes neural development by activating neurogenesis genes around the tail bud. These results suggest that pou5f3 is involved in formation of the posterior spinal cord.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Mesoderma , Medula Espinal , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
Int J Oncol ; 58(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649863

RESUMO

The AT­rich interacting domain (ARID) family of DNA­binding proteins is involved in various biological processes, including the regulation of gene expression during cell proliferation, differentiation and development. ARID3A and ARID3B are involved in chromatin remodeling and can bind to E2F1 and retinoblastoma tumor suppressor protein (RB), respectively. However, their role in regulating E2F target gene expression remains poorly understood. E2F transcription factors are critical regulators of cell cycle progression and are modulated by RB. Herein, putative ARID3­binding sites (BSs) in E2F target genes were identified, including Cdc2, cyclin E1 and p107, and it was found that ARID3A and ARID3B bound to these BSs in living cells. The mutation of ARID3 BSs reduced Cdc2 promoter activity, while ARID3A and ARID3B overexpression increased the promoter activity, depending on both ARID3 and E2F BSs. ARID3B knockdown blocked the transcription of Cdc2, cyclin E1 and p107 in normal human dermal fibroblasts (NHDFs), whereas the effects of ARID3A knockdown varied depending on the target genes. ARID3B overexpression, but not that of ARID3A, upregulated the transcription of E2F target genes, and activated cyclin E1 transcription and induced cell death with E2F1 assistance. Finally, ARID3A and ARID3B knockdown attenuated the cell cycle progression of NHDFs and T98G cells, and suppressed tumor cell growth. On the whole, these results indicate that ARID3A and ARID3B play distinct and overlapping roles in E2F­dependent transcription by directly binding to the E2F target genes. The present study provides novel insight into the mechanisms underlying the E2F dysregulation caused by ARID3A and ARID3B overexpression, which may have a significant influence on the progression of tumorigenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição E2F/metabolismo , Expressão Gênica , Neoplasias/patologia , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição/genética
13.
Cell Biol Int ; 44(11): 2263-2274, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32749762

RESUMO

Long noncoding RNA (lncRNA) dysregulation is known to be taking part in majority of cancers, including osteosarcoma. In one of our previous studies, we showed that lncRNA MEG3 is being regulated by microRNA-664a (miR-664a) suppresses the migratory potential of osteosarcoma cells (U-2OS). We now report a novel lncRNA, namely, ERICD, which is linked to the transcription factor AT-rich interaction domain 3A (ARID3A) in U-2OS cells. We show that ARID3A binds to ERICD and indirectly interacts with each other via the E2F transcription factor 1 (E2F1). Furthermore, small interfering RNA (siRNA)-mediated knockdown of ERICD inhibited cell migration, formation of colonies, and proliferation in U-2OS cells. Overexpression of ARID3A inhibited cell migration, colony formation, and proliferation, whereas siRNA-mediated knockdown of ARID3A promoted cell migration, colony formation, and proliferation. Our findings indicate that ARID3A and lncRNA ERICD have plausible tumor suppressive and oncogenic functions, respectively, in osteosarcoma. Our data demonstrate the converse interaction between ARID3A and lncRNA ERICD that target DNA-binding proteins and dysregulation of their expression through E2F1 augments osteosarcoma progression. The cell rescue experiment also indicated E2F1 to be involved in the regulation of ARID3A and ERICD.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Osteossarcoma/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Apoptose/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética
14.
Dev Biol ; 457(1): 30-42, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520602

RESUMO

In early vertebrate embryos, the dorsal ectoderm is induced by the axial mesendoderm to form the neural plate, which is given competence to form neural cells by soxB1 genes. Subsequently, neurogenesis proceeds in proneural clusters that are generated by a gene network involving proneural genes and Notch signaling. However, what occurs between early neural induction and the later initiation of neurogenesis has not been fully revealed. In the present study, we demonstrated that during gastrulation, the expression of the Oct4-related PouV gene pou5f3 (also called pou2), which is widely observed at earlier stages, was rapidly localized to an array of isolated spotted domains, each of which coincided with individual proneural clusters. Two-color in situ hybridization confirmed that each pou5f3-expressing domain included a proneural cluster. Further analysis demonstrated that anterior pou5f3 domains straddled the boundaries between rhombomere 1 (r1) and r2, whereas posterior domains were included in r4. The effects of forced expression of an inducible negative dominant-interfering pou5f3 gene suggested that pou5f3 activated early proneural genes, such as neurog1 and ebf2, and also soxB1, but repressed the late proneural genes atoh1a and ascl1b. Furthermore, pou5f3 was considered to repress her4.1, a Notch-dependent Hairy/E(spl) gene involved in lateral inhibition in proneural clusters. These results suggest that pou5f3 promotes early neurogenesis in proneural clusters, but negatively regulates later neurogenesis. Suppression of pou5f3 also altered the expression of other her genes, including her3, her5, and her9, further supporting a role for pou5f3 in neurogenesis. In vitro reporter assays in P19 cells showed that pou5f3 was repressed by neurog1, but activated by Notch signaling. These findings together demonstrate the importance of the pou5f3-mediated gene regulatory network in neural development in vertebrate embryos.


Assuntos
Placa Neural/embriologia , Neurogênese , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Placa Neural/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Proteínas de Peixe-Zebra/genética
15.
Biochem Biophys Res Commun ; 511(3): 644-649, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30826054

RESUMO

It is well known that hepatocytes regenerate after liver injury, although it is difficult to reproduce this phenomenon in vitro. The goal of this research was to determine the factors that stimulate proliferation of primary mouse hepatocytes (PMHs) in vitro. We first tested knockdown (KD) of tumor protein 53 (p53) alone as well as partial hepatectomy (PH, performed 72 h prior to PMHs preparation) alone. However, neither intervention stimulated hepatocyte proliferation during the 72-h observation period in vitro. We then tested the combination of p53 KD with PH and found that these interventions together stimulated cell proliferation in vitro. Under these latter conditions we analyzed gene expression of these cells by mRNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq). TargetScan analysis, which determines the relationship between microRNAs and gene expression, found a relationship between downregulated mmu-mir-222 (miR-222) and upregulated genes such as mitogen-activated protein kinase kinase kinase 2 (Map3k2). To confirm this relationship, we performed miR-222 KD and overexpression (OE) and observed the expected changes in target gene expression. Furthermore, the finding that miR-222 KD or OE stimulates or suppresses, respectively, hepatocyte proliferation is well explained by the association between miR-222 and its target genes, which stimulate growth. Our results suggest that miR-222 is one of the key factors regulating PMH proliferation in vitro.


Assuntos
Hepatócitos/citologia , MicroRNAs/genética , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Hepatócitos/metabolismo , MAP Quinase Quinase Quinase 2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
16.
Sci Adv ; 5(1): eaau9060, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746467

RESUMO

Compounds targeting the circadian clock have been identified as potential treatments for clock-related diseases, including cancer. Our cell-based phenotypic screen revealed uncharacterized clock-modulating compounds. Through affinity-based target deconvolution, we identified GO289, which strongly lengthened circadian period, as a potent and selective inhibitor of CK2. Phosphoproteomics identified multiple phosphorylation sites inhibited by GO289 on clock proteins, including PER2 S693. Furthermore, GO289 exhibited cell type-dependent inhibition of cancer cell growth that correlated with cellular clock function. The x-ray crystal structure of the CK2α-GO289 complex revealed critical interactions between GO289 and CK2-specific residues and no direct interaction of GO289 with the hinge region that is highly conserved among kinases. The discovery of GO289 provides a direct link between the circadian clock and cancer regulation and reveals unique design principles underlying kinase selectivity.


Assuntos
Carcinoma de Células Renais/metabolismo , Proliferação de Células/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Renais/metabolismo , Animais , Proteínas CLOCK/metabolismo , Carcinoma de Células Renais/patologia , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HEK293 , Humanos , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos
17.
J Nippon Med Sch ; 85(2): 95-101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731503

RESUMO

BACKGROUND: The antidiabetic drug teneligliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor with a thiazolidine-specific structure. This study aimed to investigate whether teneligliptin can activate PPARγ directly and/or indirectly in cell-based assays. METHODS: Promoter assays using the reporter construct driven under the control of the SV40 promoter and the PPAR response element (PPRE) were performed. Luciferase activity was measured after a 3-day incubation of vector-transduced cells with various concentrations of teneligliptin. RESULTS: Treatment of the cells with 50 µM teneligliptin significantly transactivated a reporter gene. The presence of the PPARγ antagonist, GW9662, did not affect the activation of PPRE-reporter expression by teneligliptin. CONCLUSION: We found that teneligliptin could increase PPARγ activity in cell-based assays irrespective of the PPARγ ligand-binding domain.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Pirazóis/farmacologia , Tiazolidinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Adipócitos/citologia , Anilidas/farmacologia , Células Cultivadas , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Luciferases/metabolismo , PPAR gama/antagonistas & inibidores , Ligação Proteica , Domínios Proteicos , Pirazóis/química , Elementos de Resposta , Tiazolidinas/química , Ativação Transcricional/efeitos dos fármacos
18.
Exp Cell Res ; 364(1): 28-41, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29366809

RESUMO

Zebrafish pou5f3 (previously named pou2), a close homologue of mouse Oct4, encodes a PouV-family transcription factor. pou5f3 has been implicated in diverse aspects of developmental regulation during embryogenesis. In the present study, we addressed the molecular function of Pou5f3 as a transcriptional regulator and the mechanism by which pou5f3 expression is transcriptionally regulated. We examined the influence of effector genes on the expression of the luciferase gene under the control of the upstream 2.1-kb regulatory DNA of pou5f3 (Luc-2.2) in HEK293T and P19 cells. We first confirmed that Pou5f3 functions as a transcriptional activator both in cultured cells and embryos, which confirmed autoregulation of pou5f3 in embryos. It was further shown that Luc-2.2 was activated synergistically by pou5f3 and sox3, which is similar to the co-operative activity of Oct4 and Sox2 in mice, although synergy between pou5f3 and sox2 was less obvious in this zebrafish system. The effects of pou5f3 deletion constructs on the regulation of Luc-2.2 expression revealed different roles for the three subregions of the N-terminal region in Pou5f3 in terms of its regulatory functions and co-operativity with Sox3. Electrophoretic mobility shift assays confirmed that Pou5f3 and Sox3 proteins specifically bind to adjacent sites in the 2.1-kb DNA and that there is an interaction between the two proteins. The synergy with sox3 was unique to pou5f3-the other POU factor genes examined did not show such synergy in Luc-2.2 regulation. Finally, functional interaction was observed between pou5f3 and sox3 in embryos in terms of the regulation of dorsoventral patterning and convergent extension movement. These findings together demonstrate co-operative functions of pou5f3 and sox3, which are frequently coexpressed in early embryos, in the regulation of early development.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Embrião não Mamífero/citologia , Células HEK293 , Humanos , Técnicas In Vitro , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
19.
J Biomol Struct Dyn ; 36(3): 767-778, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166455

RESUMO

Oct4 is a master regulator of the induction and maintenance of cellular pluripotency, and has crucial roles in early stages of differentiation. It is the only factor that cannot be substituted by other members of the same protein family to induce pluripotency. However, although Oct4 nuclear transport and delivery to target DNA are critical events for reprogramming to pluripotency, little is known about the molecular mechanism. Oct4 is imported to the nucleus by the classical nuclear transport mechanism, which requires importin α as an adaptor to bind the nuclear localization signal (NLS). Although there are structures of complexes of the NLS of transcription factors (TFs) in complex with importin α, there are no structures available for complexes involving intact TFs. We have therefore modeled the structure of the complex of the whole Oct4 POU domain and importin α2 using protein-protein docking and molecular dynamics. The model explains how the Ebola virus VP24 protein has a negative effect on the nuclear import of STAT1 by importin α but not on Oct4, and how Nup 50 facilitates cargo release from importin α. The model demonstrates the structural differences between the Oct4 importin α bound and DNA bound crystal states. We propose that the 'expanded linker' between the two DNA-binding domains of Oct4 is an intrinsically disordered region and that its conformational changes have a key role in the recognition/binding to both DNA and importin α. Moreover, we propose that this structural change enables efficient delivery to DNA after release from importin α.


Assuntos
Doença pelo Vírus Ebola/genética , Fator 3 de Transcrição de Octâmero/química , Proteínas Virais/química , alfa Carioferinas/química , Transporte Ativo do Núcleo Celular/genética , Sítios de Ligação , Núcleo Celular/química , Núcleo Celular/genética , Reprogramação Celular/genética , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Mapas de Interação de Proteínas , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/genética , Proteínas Virais/genética , alfa Carioferinas/genética
20.
Int J Oncol ; 50(6): 2043-2048, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28440416

RESUMO

Fucose residues of cell surface glycans, which play important roles in growth, invasion and metastasis, are added by fucosyltransferases (FUTs) and removed by α-L-fucosidases (FUCAs). By the differential display method, we isolated a 3' non-coding region of α-L-fucosidase-1 (FUCA1) (a gene coding for the lysosomal fucosidase-1 enzyme) as a wild-type p53-inducible gene: 18S and 20S FUCA1 mRNA species were induced in Saos-2 cells transfected with a temperature-sensitive p53 mutant at the permissive temperature. By microarray analyses of thyroid cancer biopsy samples, FUCA1 RNA expression levels were found to be lower in anaplastic thyroid cancer samples (ATCs), while they were higher in papillary thyroid cancer samples (PTCs) and in normal thyroid tissues. Since most ATCs were reported to carry the mutated form of p53, while PTCs carry mostly the wild-type form of p53, it is likely that FUCA1 expression levels are regulated, at least in part, by the p53 status in thyroid cancers. In order to better understand the role played by FUCA genes in thyroid tumorigenesis, we examined the clonogenic potential in vitro of thyroid cell lines transfected with either FUCA1 or FUCA2 (the latter gene coding for a secreted, non-lysosomal enzyme). We found that α-L-fucosidases did not suppress grossly cell growth. Contrary to what we observed with the expression of FUCA1, the FUT8 expression levels were found high in ATCs but lower in PTCs and normal thyroid tissues. Taken together, these results suggest the possibility that the higher fucose levels on cell surface glycans of aggressive ATCs, compared to those of less aggressive PTCs, may be at least in part responsible for the more aggressive and metastatic phenotype of ATCs compared to PTCs, as the expression levels of FUCA1 and FUT8 were inversely related in these two types of cancers.


Assuntos
Carcinoma Papilar/genética , Fucosiltransferases/genética , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Proteína Supressora de Tumor p53/genética , alfa-L-Fucosidase/genética , Carcinoma Papilar/patologia , Linhagem Celular Tumoral , Feminino , Fucose/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mutação , Metástase Neoplásica , Câncer Papilífero da Tireoide , Carcinoma Anaplásico da Tireoide/patologia , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...