Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(20): 207402, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36461987

RESUMO

Using broadband (12-45 THz) multi-terahertz spectroscopy, we show that stimulated Rayleigh scattering dominates the transient optical conductivity of cadmium arsenide, a Dirac semimetal, under an optical driving field at 30 THz. The characteristic dispersive line shape with net optical gain is accounted for by optical transitions between light-induced Floquet subbands, strikingly enhanced by the longitudinal plasma mode. Stimulated Rayleigh scattering with an unprecedentedly large refractive index change may pave the way for slow light generation in conductive solids at room temperature.

2.
Sci Adv ; 8(51): eabq7281, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542708

RESUMO

Floquet engineering is a promising way of controlling quantum system with photon-dressed states on an ultrafast time scale. So far, the energy structure of Floquet states in solids has been intensively investigated. However, the dynamical aspects of the photon-dressed states under ultrashort pulse have not been explored yet. Their dynamics become highly sensitive to the driving field transients, and thus, understanding them is crucial for ultrafast manipulation of a quantum state. Here, we observed the coherent exciton emission in monolayer WSe2 at room temperature at the appropriate photon energy and the field strength of the driving light pulse using high-harmonic spectroscopy. Together with numerical calculations, our measurements revealed that the coherent exciton emission spectrum reflects the diabatic and adiabatic dynamics of Floquet states of excitons. Our results provide a previosuly unexplored approach to Floquet engineering and lead to control of quantum materials through pulse shaping of the driving field.

3.
Sci Adv ; 6(27)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32937460

RESUMO

Laser technology has developed and accelerated photo-induced nonequilibrium physics, from both the scientific and engineering viewpoints. Floquet engineering, i.e., controlling material properties and functionalities by time-periodic drives, is at the forefront of quantum physics of light-matter interaction. However, it is limited to ideal dissipationless systems. Extending Floquet engineering to various materials requires understanding of the quantum states emerging in a balance of the periodic drive and energy dissipation. Here, we derive a general description for nonequilibrium steady states (NESSs) in periodically driven dissipative systems by focusing on systems under high-frequency drive and time-independent Lindblad-type dissipation. Our formula correctly describes the time average, fluctuation, and symmetry properties of the NESS, and can be computed efficiently in numerical calculations. This approach will play fundamental roles in Floquet engineering in a broad class of dissipative quantum systems from atoms and molecules to mesoscopic systems, and condensed matter.

4.
Phys Rev Lett ; 125(6): 060601, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845651

RESUMO

We investigate an unconventional symmetry in time-periodically driven systems, the Floquet dynamical symmetry (FDS). Unlike the usual symmetries, the FDS gives symmetry sectors that are equidistant in the Floquet spectrum and protects quantum coherence between them from dissipation and dephasing, leading to two kinds of time crystals: the discrete time crystal and discrete time quasicrystal that have different periodicity in time. We show that these time crystals appear in the Bose- and Fermi-Hubbard models under ac fields and their periodicity can be tuned only by adjusting the strength of the field. These time crystals arise only from the FDS and thus appear in both dissipative and isolated systems and in the presence of disorder as long as the FDS is respected. We discuss their experimental realizations in cold atom experiments and generalization to the SU(N)-symmetric Hubbard models.

5.
Phys Rev Lett ; 124(11): 117402, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242712

RESUMO

We report strong terahertz (∼10^{12} Hz) high harmonic generation at room temperature in thin films of Cd_{3}As_{2}, a three-dimensional Dirac semimetal. Third harmonics are detectable with a tabletop light source and can be as strong as 100 V/cm by applying a fundamental field of 6.5 kV/cm inside the film, demonstrating an unprecedented efficiency for terahertz frequency conversion. Our time-resolved terahertz spectroscopy and calculations also clarify the microscopic mechanism of the nonlinearity originating in the coherent acceleration of Dirac electrons in momentum space. Our results provide clear insights for nonlinear currents of Dirac electrons driven by the terahertz field under the influence of scattering, paving the way toward novel devices for high-speed electronics and photonics based on topological semimetals.

6.
Sci Rep ; 10(1): 1239, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988358

RESUMO

Ultrathin sheets of transition metal dichalcogenides (MX2) with charge density waves (CDWs) is increasingly gaining interest as a promising candidate for graphene-like devices. Although experimental data including stripe/quasi-stripe structure and hidden states have been reported, the ground state of ultrathin MX2 compounds and, in particular, the origin of anisotropic (stripe and quasi-stripe) CDW phases is a long-standing problem. Anisotropic CDW phases have been explained by Coulomb interaction between domain walls and inter-layer interaction. However, these models assume that anisotropic domain walls can exist in the first place. Here, we report that anisotropic CDW domain walls can appear naturally without assuming anisotropic interactions: We explain the origin of these phases by topological defect theory (line defects in a two-dimensional plane) and interference between harmonics of macroscopic CDW wave functions. We revisit the McMillan-Nakanishi-Shiba model for monolayer 1T-TaS2 and 2H-TaSe2 and show that CDWs with wave vectors that are separated by 120° (i.e. the three-fold rotation symmetry of the underlying lattice) contain a free-energy landscape with many local minima. Then, we remove this 120° constraint and show that free energy local minima corresponding to the stripe and quasi-stripe phases appear. Our results imply that Coulomb interaction between domain walls and inter-layer interaction may be secondary factors for the appearance of stripe and quasi-stripe CDW phases. Furthermore, this model explains our recent experimental result (appearance of the quasi-stripe structure in monolayer 1T-TaS2) and can predict new CDW phases, hence it may become the basis to study CDW further. We anticipate our results to be a starting point for further study in two-dimensional physics, such as explanation of "Hidden CDW states", study the interplay between supersolid symmetry and lattice symmetry, and application to other van der Waals structures.

7.
Phys Rev E ; 95(2-1): 022129, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297846

RESUMO

Entanglement prethermalization (EP) refers to a quasi-stationary nonequilibrium state of a composite system in which each individual subsystem looks thermal but the entire system remains nonthermal due to quantum entanglement between subsystems. We theoretically study the dynamics of EP following a coherent split of a one-dimensional harmonic potential in which two interacting bosons are confined. This problem is equivalent to that of an interaction quench between two harmonic oscillators. We show that this simple model captures the bare essentials of EP; that is, each subsystem relaxes to an approximate thermal equilibrium, whereas the total system remains entangled. We find that a generalized Gibbs ensemble exactly describes the total system if we take into account nonlocal conserved quantities that act nontrivially on both subsystems. In the presence of a symmetry-breaking perturbation, the relaxation dynamics of the system exhibits a quasi-stationary EP plateau and eventually reaches thermal equilibrium. We analytically show that the lifetime of EP is inversely proportional to the magnitude of the perturbation.

8.
Phys Rev E ; 93(3): 032116, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078301

RESUMO

We numerically study the unitary time evolution of a nonintegrable model of hard-core bosons with an extensive number of local Z(2) symmetries. We find that the expectation values of local observables in the stationary state are described better by the generalized Gibbs ensemble (GGE) than by the canonical ensemble. We also find that the eigenstate thermalization hypothesis fails for the entire spectrum but holds true within each symmetry sector, which justifies the GGE. In contrast, if the model has only one global Z(2) symmetry or a size-independent number of local Z(2) symmetries, we find that the stationary state is described by the canonical ensemble. Thus, the GGE is necessary to describe the stationary state even in a nonintegrable system if it has an extensive number of local symmetries.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26382326

RESUMO

We numerically investigate quantum quenches of a nonintegrable hard-core Bose-Hubbard model to test the accuracy of the microcanonical ensemble in small isolated quantum systems. We show that, in a certain range of system size, the accuracy increases with the dimension of the Hilbert space D as 1/D. We ascribe this rapid improvement to the absence of correlations between many-body energy eigenstates. Outside of that range, the accuracy is found to scale either as 1/√D or algebraically with the system size.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052105, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493738

RESUMO

We ask whether the eigenstate thermalization hypothesis (ETH) is valid in a strong sense: in the limit of an infinite system, every eigenstate is thermal. We examine expectation values of few-body operators in highly excited many-body eigenstates and search for "outliers," the eigenstates that deviate the most from ETH. We use exact diagonalization of two one-dimensional nonintegrable models: a quantum Ising chain with transverse and longitudinal fields, and hard-core bosons at half-filling with nearest- and next-nearest-neighbor hopping and interaction. We show that even the most extreme outliers appear to obey ETH as the system size increases and thus provide numerical evidences that support ETH in this strong sense. Finally, periodically driving the Ising Hamiltonian, we show that the eigenstates of the corresponding Floquet operator obey ETH even more closely. We attribute this better thermalization to removing the constraint of conservation of the total energy.

11.
Artigo em Inglês | MEDLINE | ID: mdl-23410301

RESUMO

By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH), which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in a weak sense holds in the thermodynamic limit even for an integrable system, although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.


Assuntos
Gases/química , Modelos Químicos , Modelos Moleculares , Modelos Estatísticos , Teoria Quântica , Simulação por Computador , Transferência de Energia , Termodinâmica
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 1): 021130, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21928972

RESUMO

We derive an upper bound on the difference between the long-time average and the microcanonical ensemble average of observables in isolated quantum systems. We propose, numerically verify, and analytically support a new hypothesis, the eigenstate randomization hypothesis (ERH), which implies that in the energy eigenbasis the diagonal elements of observables fluctuate randomly. We show that ERH includes the eigenstate thermalization hypothesis (ETH) and makes the aforementioned bound vanishingly small. Moreover, ERH is applicable to integrable systems for which ETH breaks down. We argue that the range of the validity of ERH determines that of the microcanonical description.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...