Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Am J Respir Cell Mol Biol ; 63(1): 67-78, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32101459

RESUMO

Epithelial dysfunction in the small airways may cause the development of emphysema in chronic obstructive pulmonary disease. C/EBPα (CCAAT/enhancer binding protein-α), a transcription factor, is required for lung maturation during development, and is also important for lung homeostasis after birth, including the maintenance of serine protease/antiprotease balance in the bronchiolar epithelium. This study aimed to show the roles of C/EBPα in the distal airway during chronic cigarette smoke exposure in mice and in the small airways in smokers. In a model of chronic smoke exposure using epithelial cell-specific C/EBPα-knockout mice, significant pathological phenotypes, such as higher protease activity, impaired ciliated cell regeneration, epithelial cell barrier dysfunction via reduced zonula occludens-1 (Zo-1), and decreased alveolar attachments, were found in C/EBPα-knockout mice compared with control mice. We found that Spink5 (serine protease inhibitor kazal-type 5) gene (encoding lymphoepithelial Kazal-type-related inhibitor [LEKTI], an anti-serine protease) expression in the small airways is a key regulator of protease activity in this model. Finally, we showed that daily antiprotease treatment counteracted the phenotypes of C/EBPα-knockout mice. In human studies, CEBPA (CCAAT/enhancer binding protein-α) gene expression in the lung was downregulated in patients with emphysema, and six smokers with centrilobular emphysema (CLE) showed a significant reduction in LEKTI in the small airways compared with 22 smokers without CLE. LEKTI downregulation in the small airways was associated with disease development during murine small airway injury and CLE in humans, suggesting that LEKTI might be a key factor linking small airway injury to the development of emphysema.


Assuntos
Pulmão/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Serina Proteases/metabolismo , Animais , Bronquíolos/metabolismo , Bronquíolos/patologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Fumar/metabolismo
2.
J Biol Chem ; 290(30): 18559-74, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26048993

RESUMO

Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79-271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/biossíntese , Fosfoproteínas/metabolismo , Alvéolos Pulmonares/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Camundongos , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Fosfoproteínas/genética , Mapas de Interação de Proteínas/genética , Alvéolos Pulmonares/citologia , Surfactantes Pulmonares/metabolismo
3.
PLoS One ; 9(5): e91376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806461

RESUMO

Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (Scap(Δ/Δ), resulting in inactivation of SREBP signaling) or Insig1 and Insig2 (Insig1/2(Δ/Δ), resulting in activation of SREBP signaling) was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/ß-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.


Assuntos
Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/citologia , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 306(8): L726-35, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24508732

RESUMO

A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-ß (TGF-ß) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-ß induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-ß pathway in the lung is unknown. The αvß6 integrin is an important in vivo activator of TGF-ß activation in the lung. Immunohistochemical analysis of αvß6 protein expression and bronchoalveolar analysis of TGF-ß pathway signaling indicates activation of the αvß6/TGF-ß pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvß6/TGF-ß pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvß6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvß6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the ß6 integrin, TGF-α transgenic mice were mated with ß6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of the ß6 integrin attenuated histological and physiological changes in the lungs of TGF-α transgenic mice although a significant degree of fibrosis still developed. In summary, inhibition of the ß6 integrin led to a modest, albeit significant, effect on pleural thickening and lung function decline observed with TGF-α-induced pulmonary fibrosis. These data support activation of the αvß6/TGF-ß pathway as a secondary effect contributing to TGF-α-induced pleural fibrosis and suggest a complex contribution of multiple mediators to the maintenance of progressive fibrosis in the lung.


Assuntos
Integrinas/antagonistas & inibidores , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador alfa/farmacologia , Animais , Antibacterianos/toxicidade , Anticorpos Neutralizantes , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Lavagem Broncoalveolar , Colágeno , Doxiciclina/toxicidade , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Técnicas Imunoenzimáticas , Integrinas/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/farmacologia , Uteroglobina/fisiologia
5.
Am J Respir Cell Mol Biol ; 50(4): 777-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24199692

RESUMO

Pulmonary fibrosis is caused by excessive proliferation and accumulation of stromal cells. Fibrocytes are bone marrow (BM)-derived cells that contribute to pathologic stromal cell accumulation in human lung disease. However, the cellular source for these stromal cells and the degree of fibrocyte contribution to pulmonary fibrosis remain unclear. To determine the etiology of stromal cell excess during pulmonary fibrosis, we measured fibrocytes during the progression of fibrosis in the transforming growth factor (TGF)-α transgenic mouse model. Lung epithelial-specific overexpression of TGF-α led to progressive pulmonary fibrosis associated with increased accumulation of fibrocytes in the fibrotic lesions. Although reconstitution of BM cells into TGF-α mice demonstrated accumulation of these cells in fibrotic lesions, the majority of the cells did not express α-smooth muscle actin, suggesting that fibrocytes did not transform into myofibroblasts. To explore the mechanisms of fibrocytes in pulmonary fibrogenesis, adoptive cell-transfer experiments were performed. Purified fibrocytes were transferred intravenously into TGF-α transgenic mice, and fibrosis endpoints were compared with controls. Analysis of lung histology and hydroxyproline levels demonstrated that fibrocyte transfers augment TGF-α-induced lung fibrosis. A major subset of TGF-α-induced fibrocytes expressed CD44 and displayed excessive invasiveness, which is attenuated in the presence of anti-CD44 antibodies. Coculture experiments of resident fibroblasts with fibrocytes demonstrated that fibrocytes stimulate proliferation of resident fibroblasts. In summary, fibrocytes are increased in the progressive, fibrotic lesions of TGF-α-transgenic mice and activate resident fibroblasts to cause severe lung disease.


Assuntos
Células da Medula Óssea/metabolismo , Movimento Celular , Proliferação de Células , Fibroblastos/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Células Estromais/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Transferência Adotiva , Animais , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Fibroblastos/patologia , Fibroblastos/transplante , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Receptores de Hialuronatos/metabolismo , Hidroxiprolina/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Células Estromais/patologia , Células Estromais/transplante , Fatores de Tempo , Fator de Crescimento Transformador alfa/genética , Regulação para Cima
6.
Am J Respir Cell Mol Biol ; 49(3): 348-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590306

RESUMO

Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Macrófagos/metabolismo , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Receptores Acoplados a Proteínas G/genética , Mucosa Respiratória/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Células Epiteliais/patologia , Éxons , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosfatidilcolinas/biossíntese , Alvéolos Pulmonares/patologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
7.
PLoS One ; 8(3): e58511, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23526992

RESUMO

Sorting nexin 5 (Snx5) has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5(-/-) mice) resulted in partial perinatal lethality; 40% of Snx5(-/-) mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5(-/-) mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5(-/-) mice were comparable to those of Snx5(+/+) mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5 (-/-) mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.


Assuntos
Células Epiteliais Alveolares/fisiologia , Insuficiência Respiratória/etiologia , Nexinas de Classificação/deficiência , Células Epiteliais Alveolares/classificação , Células Epiteliais Alveolares/patologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Alvéolos Pulmonares/anormalidades , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Insuficiência Respiratória/patologia , Insuficiência Respiratória/fisiopatologia , Nexinas de Classificação/genética , Nexinas de Classificação/fisiologia
8.
PLoS One ; 8(2): e57013, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437297

RESUMO

The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) is a basic leucine zipper transcription factor and is expressed in alveolar type II cells, alveolar macrophages and Clara cells in the lung. Although decrease or absence of C/EBPα expression in human non-small cell lung cancer suggests a possible role of C/EBPα as a lung tumor suppressor, there is no direct proof for this hypothesis. In this study, we investigated, for the first time, the role of C/EBPα in lung tumors in vivo using transgenic mice with lung epithelial specific conditional deletion of Cebpa (Cebpα(Δ/Δ) mice) and a urethane-induced lung tumor model. C/EBPα expression in the lung was dispensable, and its deletion was not oncogenic under unstressed conditions. However, at 28 wk after urethane injection, the number and size of tumors and the tumor burden were significantly higher in Cebpα(Δ/Δ) mice than in littermate control mice. Urethane-injected Cebpα(Δ/Δ) mice showed highly proliferative adenomas and adenocarcinomas in the lung, and survival time after urethane-injection was significantly shorter than that in control mice. In control mice, C/EBPα was strongly induced in the tumor tissues at 28 weeks after urethane-injection, but became weakened or absent as tumors progressed after long-term observation for over 1 year. Using intraperitoneal injection of p38 inhibitor (SB203580), we demonstrated that the induction of C/EBPα is strongly regulated by the p38 MAP kinase in murine alveolar epithelial cells. A high correlation was demonstrated between the expression of C/EBPα and p38α MAP kinase in tumor cells, suggesting that C/EBPα silencing in tumor cells is caused by down-regulation of p38α MAP kinase. In conclusion, the role of C/EBPα as a lung tumor suppressor was demonstrated for the first time in the present study, and the extinguished C/EBPα expression through p38α inactivation leads tumor promotion and progression.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Morte Celular , Proliferação de Células , Metilação de DNA , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Homozigoto , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Regiões Promotoras Genéticas , Uretana/efeitos adversos
9.
Dev Biol ; 370(2): 198-212, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22885335

RESUMO

Respiratory epithelial cells are derived from cell progenitors in the foregut endoderm that subsequently differentiate into the distinct cell types lining the conducting and alveolar regions of the lung. To identify transcriptional mechanisms regulating differentiation and maintenance of respiratory epithelial cells, we conditionally deleted Foxm1 transcription factor from the conducting airways of the developing mouse lung. Conditional deletion of Foxm1 from Clara cells, controlled by the Scgb1a1 promoter, dramatically altered airway structure and caused peribronchial fibrosis, resulting in airway hyperreactivity in adult mice. Deletion of Foxm1 inhibited proliferation of Clara cells and disrupted the normal patterning of epithelial cell differentiation in the bronchioles, causing squamous and goblet cell metaplasia, and the loss of Clara and ciliated cells. Surprisingly, conducting airways of Foxm1-deficient mice contained highly differentiated cuboidal type II epithelial cells that are normally restricted to the alveoli. Lineage tracing studies showed that the ectopic alveolar type II cells in Foxm1-deficient airways were derived from Clara cells. Deletion of Foxm1 inhibited Sox2 and Scgb1a1, both of which are critical for differentiation and function of Clara cells. In co-transfection experiments, Foxm1 directly bound to and induced transcriptional activity of Scgb1a1 and Sox2 promoters. Foxm1 is required for differentiation and maintenance of epithelial cells lining conducting airways.


Assuntos
Diferenciação Celular , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Sistema Respiratório/citologia , Sistema Respiratório/crescimento & desenvolvimento , Animais , Células Epiteliais/citologia , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Camundongos , Alvéolos Pulmonares/citologia , Fatores de Transcrição SOXB1/metabolismo , Transcriptoma , Uteroglobina/metabolismo
10.
PLoS One ; 7(8): e37046, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916088

RESUMO

The timing of lung maturation is controlled precisely by complex genetic and cellular programs. Lung immaturity following preterm birth frequently results in Respiratory Distress Syndrome (RDS) and Broncho-Pulmonary Dysplasia (BPD), which are leading causes of mortality and morbidity in preterm infants. Mechanisms synchronizing gestational length and lung maturation remain to be elucidated. In this study, we designed a genome-wide mRNA expression time-course study from E15.5 to Postnatal Day 0 (PN0) using lung RNAs from C57BL/6J (B6) and A/J mice that differ in gestational length by ∼30 hr (B6

Assuntos
Pulmão/crescimento & desenvolvimento , Transcrição Gênica , Animais , Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Surfactantes Pulmonares/metabolismo , RNA Mensageiro/genética , Transdução de Sinais
11.
PLoS One ; 7(7): e39392, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808033

RESUMO

Although superiority of synthetic surfactant over animal-driven surfactant has been known, there is no synthetic surfactant commercially available at present. Many trials have been made to develop synthetic surfactant comparable in function to animal-driven surfactant. The efficacy of treatment with a new synthetic surfactant (CHF5633) containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, SP-B analog, and SP-C analog was evaluated using immature newborn lamb model and compared with animal lung tissue-based surfactant Survanta. Lambs were treated with a clinical dose of 200 mg/kg CHF5633, 100 mg/kg Survanta, or air after 15 min initial ventilation. All the lambs treated with air died of respiratory distress within 90 min of age. During a 5 h study period, Pco(2) was maintained at 55 mmHg with 24 cmH(2)O peak inspiratory pressure for both groups. The preterm newborn lamb lung functions were dramatically improved by CHF5633 treatment. Slight, but significant superiority of CHF5633 over Survanta was demonstrated in tidal volume at 20 min and dynamic lung compliance at 20 and 300 min. The ultrastructure of CHF5633 was large with uniquely aggregated lipid particles. Increased uptake of CHF5633 by alveolar monocytes for catabolism was demonstrated by microphotograph, which might be associated with the higher treatment dose of CHF5633. The higher catabolism of CHF5633 was also suggested by the similar amount of surfactant lipid in bronchoalveolar lavage fluid (BALF) between CHF5633 and Survanta groups, despite the 2-fold higher treatment dose of CHF5633. Under the present ventilation protocol, lung inflammation was minimal for both groups, evaluated by inflammatory cell numbers in BALF and expression of IL-1ß, IL-6, IL-8, and TNFα mRNA in the lung tissue. In conclusion, the new synthetic surfactant CHF5633 was effective in treating extremely immature newborn lambs with surfactant deficiency during the 5 h study period.


Assuntos
Pulmão/efeitos dos fármacos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/uso terapêutico , Fosfatidilcolinas/síntese química , Fosfatidilcolinas/uso terapêutico , Nascimento Prematuro/tratamento farmacológico , Proteína B Associada a Surfactante Pulmonar/síntese química , Proteína B Associada a Surfactante Pulmonar/uso terapêutico , Proteína C Associada a Surfactante Pulmonar/síntese química , Proteína C Associada a Surfactante Pulmonar/uso terapêutico , Surfactantes Pulmonares/síntese química , Surfactantes Pulmonares/uso terapêutico , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Animais Recém-Nascidos , Líquido da Lavagem Broncoalveolar/química , Citocinas/biossíntese , Citocinas/imunologia , Esquema de Medicação , Humanos , Recém-Nascido , Pulmão/imunologia , Complacência Pulmonar/efeitos dos fármacos , Fosfatidilgliceróis/química , Nascimento Prematuro/imunologia , Proteolipídeos/química , Respiração Artificial , Carneiro Doméstico , Volume de Ventilação Pulmonar/efeitos dos fármacos
12.
Pediatr Radiol ; 42(11): 1347-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22735927

RESUMO

BACKGROUND: Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. OBJECTIVE: To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. MATERIALS AND METHODS: A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. RESULTS: All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. CONCLUSION: Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.


Assuntos
Unidades de Terapia Intensiva Neonatal , Terapia Intensiva Neonatal/métodos , Imageamento por Ressonância Magnética/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos
13.
Am J Respir Cell Mol Biol ; 47(4): 454-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22652201

RESUMO

Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein-α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic Cebpα(Δ/Δ) mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in Cebpα(Δ/Δ) mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of Cebpα(Δ/Δ) mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases.


Assuntos
Bronquíolos/patologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Pulmão/patologia , Peptídeo Hidrolases/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Regeneração , Mucosa Respiratória/enzimologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Aprotinina/farmacologia , Bronquíolos/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem da Célula , Feminino , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Naftalenos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Secretadas Inibidoras de Proteinases/genética , Mucosa Respiratória/metabolismo , Inibidores de Serina Proteinase/farmacologia , Transcriptoma
14.
J Biol Chem ; 287(13): 10099-10114, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22267724

RESUMO

Pulmonary inflammation is associated with altered lipid synthesis and clearance related to diabetes, obesity, and various inherited metabolic disorders. In many tissues, lipogenesis is regulated at the transcriptional level by the activity of sterol-response element-binding proteins (SREBP). The role of SREBP activation in the regulation of lipid metabolism in the lung was assessed in mice in which both Insig1 and Insig2 genes, encoding proteins that bind and inhibit SREBPs in the endoplasmic reticulum, were deleted in alveolar type 2 cells. Although deletion of either Insig1 or Insig2 did not alter SREBP activity or lipid homeostasis, deletion of both genes (Insig1/2(Δ/Δ) mice) activated SREBP1, causing marked accumulation of lipids that consisted primarily of cholesterol esters and triglycerides in type 2 epithelial cells and alveolar macrophages. Neutral lipids accumulated in type 2 cells in association with the increase in mRNAs regulating fatty acid, cholesterol synthesis, and inflammation. Although bronchoalveolar lavage fluid phosphatidylcholine was modestly decreased, lung phospholipid content and lung function were maintained. Insig1/2(Δ/Δ) mice developed lung inflammation and airspace abnormalities associated with the accumulation of lipids in alveolar type 2 cells, alveolar macrophages, and within alveolar spaces. Deletion of Insig1/2 activated SREBP-enhancing lipogenesis in respiratory epithelial cells resulting in lipotoxicity-related lung inflammation and tissue remodeling.


Assuntos
Lipogênese , Proteínas de Membrana/metabolismo , Pneumonia/metabolismo , Alvéolos Pulmonares/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Ésteres do Colesterol/genética , Ésteres do Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
15.
Am J Respir Cell Mol Biol ; 46(3): 380-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22021337

RESUMO

Pulmonary fibrosis remains a significant public health burden with no proven therapies. The mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade is a major pathway controlling cellular processes associated with fibrogenesis, including growth, proliferation, and survival. Activation of the MAPK/ERK pathway is detected in the lungs of human fibrosis samples; however, the effect of modulating the pathway in vivo is unknown. Overexpression of transforming growth factor (TGF)-α in the lung epithelium of transgenic mice causes a progressive pulmonary fibrosis associated with increased MEK/ERK activation localized primarily in mesenchymal cells. To determine the role of the MEK pathway in the induction of TGF-α-induced lung fibrosis, TGF-α was overexpressed for 4 weeks while mice were simultaneously treated with the specific MEK inhibitor, ARRY-142886 (ARRY). Treatment with ARRY prevented increases in lung cell proliferation and total lung collagen, attenuated production of extracellular matrix genes, and protected mice from changes in lung function. ARRY administered as a rescue treatment after fibrosis was already established inhibited fibrosis progression, as assessed by lung histology, changes in body weights, extracellular matrix gene expression, and lung mechanics. These findings demonstrate that MEK inhibition prevents progression of established fibrosis in the TGF-α model, and provides proof of concept of targeting the MEK pathway in fibrotic lung disease.


Assuntos
Benzimidazóis/farmacologia , Receptores ErbB/metabolismo , Pulmão/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/prevenção & controle , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Regulação da Expressão Gênica , Humanos , Pulmão/enzimologia , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 302(4): L380-9, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22160306

RESUMO

The proinflammatory stimulus of chorioamnionitis is commonly associated with preterm delivery. Women at risk of preterm delivery receive antenatal glucocorticoids to functionally mature the fetal lung. However, the effects of the combined exposures of chorioamnionitis and antenatal glucocorticoids on the fetus are poorly understood. Time-mated ewes with singleton fetuses received an intra-amniotic injection of lipopolysaccharide (LPS) either preceding or following maternal intramuscular betamethasone 7 or 14 days before delivery, and the fetuses were delivered at 120 days gestational age (GA) (term = 150 days GA). Gestation matched controls received intra-amniotic and maternal intramuscular saline. Compared with saline controls, intra-amniotic LPS increased inflammatory cells in the bronchoalveolar lavage and myeloperoxidase, Toll-like receptor 2 and 4 mRNA, PU.1, CD3, and Foxp3-positive cells in the fetal lung. LPS-induced lung maturation measured as increased airway surfactant and improved lung gas volumes. Intra-amniotic LPS-induced inflammation persisted until 14 days after exposure. Betamethasone treatment alone induced modest lung maturation but, when administered before intra-amniotic LPS, suppressed lung inflammation. Interestingly, betamethasone treatment after LPS did not counteract inflammation but enhanced lung maturation. We conclude that the order of exposures of intra-amniotic LPS or maternal betamethasone had large effects on fetal lung inflammation and maturation.


Assuntos
Betametasona/uso terapêutico , Corioamnionite/tratamento farmacológico , Desenvolvimento Fetal/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Pulmão/embriologia , Âmnio , Animais , Líquido da Lavagem Broncoalveolar/citologia , Corioamnionite/etiologia , Corioamnionite/imunologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Maturidade dos Órgãos Fetais/imunologia , Expressão Gênica , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/imunologia , Masculino , Acetato de Medroxiprogesterona/uso terapêutico , Peroxidase/metabolismo , Fosfatidilcolinas/metabolismo , Gravidez , Nascimento Prematuro/imunologia , Nascimento Prematuro/prevenção & controle , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/metabolismo , Distribuição Aleatória , Ovinos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
17.
Dev Biol ; 362(1): 24-41, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22094019

RESUMO

Hypoxia inducible factor (HIF) 1a, EPAS1 and NEPAS are expressed in the embryonic mouse lung and each isoform exhibits distinct spatiotemporal expression patterns throughout morphogenesis. To further assess the role of the HIF1a isoform in lung epithelial cell differentiation and homeostasis, we created transgenic mice that express a constitutively active isoform of human HIF-1a (HIF-1a three point mutant (TPM)), in a doxycycline-dependent manner. Expression of HIF1a TPM in the developing pulmonary epithelium resulted in lung hypoplasia characterized by defective branching morphogenesis, altered cellular energetics and impaired epithelial maturation, culminating in neonatal lethality at birth from severe respiratory distress. Histological and biochemical analyses revealed expanded glycogen pools in the pulmonary epithelial cells at E18.5, concomitant with decreased pulmonary surfactant, suggesting a delay or an arrest in maturation. Importantly, these defects occurred in the absence of apoptosis or necrosis. In addition, sub-pleural hemorrhaging was evident as early as E14.5 in HIF1a TPM lungs, despite normal patterning of the blood vasculature, consistent with defects in endothelial barrier function. Epithelial expression of HIF1a TPM also resulted in increased VEGFA and VEGFC production, an increase in the number of lymphatic vessels and indirect activation of the multiple Notch pathway components in endothelial precursor cells. Collectively, these data indicate that HIF-1a protein levels in the pulmonary epithelium must be tightly controlled for proper development of the epithelial and mesenchymal compartments.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/embriologia , Linfangiogênese/fisiologia , Mucosa Respiratória/embriologia , Análise de Variância , Animais , Primers do DNA/genética , DNA Mitocondrial/genética , Doxiciclina , Vetores Genéticos/genética , Glicogênio/metabolismo , Soros Imunes/genética , Immunoblotting , Imuno-Histoquímica , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fosfatidilcolinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/metabolismo , Transgenes/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
18.
PLoS One ; 6(11): e26682, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096492

RESUMO

Among all mammals, fetal growth and organ maturation must be precisely synchronized with gestational length to optimize survival at birth. Lack of pulmonary maturation is the major cause of infant mortality in preterm birth. Whether fetal or maternal genotypes influence the close relationship between the length of gestation and lung function at birth is unknown. Structural and biochemical indicators of pulmonary maturity were measured in two mouse strains whose gestational length differed by one day. Shorter gestation in C57BL/6J mice was associated with advanced morphological and biochemical pulmonary development and better perinatal survival when compared to A/J pups born prematurely. After ovarian transplantation, A/J pups were born early in C57BL/6J dams and survived after birth, consistent with maternal control gestational length. Expression of genes critical for perinatal lung function was assessed in A/J pups born after ovarian transfer. A subset of mRNAs important for perinatal respiratory adaptation was selectively induced in the A/J pups born after ovarian transfer. mRNAs precociously induced after ovarian transfer indicated an important role for the transcription factors C/EBPα and CREB in maternally induced lung maturation. We conclude that fetal lung maturation is determined by both fetal and maternal genotypes. Ovarian transfer experiments demonstrated that maternal genotype determines the timing of birth and can influence fetal lung growth and maturation to ensure perinatal survival.


Assuntos
Maturidade dos Órgãos Fetais/fisiologia , Idade Gestacional , Pulmão/embriologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Genótipo , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
19.
Pulm Med ; 2011: 653524, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660239

RESUMO

Injury to the distal respiratory epithelium has been implicated as an underlying cause of idiopathic lung diseases. Mutations that result in SP-C deficiencies are linked to a small subset of spontaneous and familial cases of interstitial lung disease (ILD) and interstitial pulmonary fibrosis (IPF). Gene-targeted mice that lack SP-C (Sftpc(-/-)) develop an irregular ILD-like disease with age and are a model of the human SP-C related disease. In the current study, we investigated whether rapamycin could ameliorate bleomycin-induced fibrosis in the lungs of Sftpc(-/-) mice. Sftpc(+/+) and -/- mice were exposed to bleomycin with either preventative administration of rapamycin or therapeutic administration beginning eight days after the bleomycin injury. Rapamycin-treatment increased weight loss and decreased survival of bleomycin-treated Sftpc(+/+) and Sftpc(-/-) mice. Rapamycin did not reduce the fibrotic disease in the prophylactic or rescue experiments of either genotype of mice. Further, rapamycin treatment augmented airway resistance and reduced lung compliance of bleomycin-treated Sftpc(-/-) mice. Rapamycin treatment was associated with an increased expression of profibrotic Th2 cytokines and reduced expression of INF-γ. These findings indicate that novel therapeutics will be required to treat individuals with SP-C deficient ILD/IPF.

20.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L498-505, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21216976

RESUMO

In the fetus, leptin in the circulation increases at late gestation and likely influences fetal organ development. Increased surfactant by leptin was previously demonstrated in vitro using fetal lung explant. We hypothesized that leptin treatment given to fetal sheep and pregnant mice might increase surfactant synthesis in the fetal lung in vivo. At 122-124 days gestational age (term: 150 days), fetal sheep were injected with 5 mg of leptin or vehicle using ultrasound guidance. Three and a half days after injection, preterm lambs were delivered, and lung function was studied during 30-min ventilation, followed by pulmonary surfactant components analyses. Pregnant A/J mice were given 30 or 300 mg of leptin or vehicle by intraperitoneal injection according to five study protocols with different doses, number of treatments, and gestational ages to treat. Surfactant components were analyzed in fetal lung 24 h after the last maternal treatment. Leptin injection given to fetal sheep increased fetal body weight. Control and leptin-treated groups were similar in lung function (preterm newborn lamb), surfactant components pool sizes (lamb and fetal mice), and expression of genes related to surfactant synthesis in the lung (fetal mice). Likewise, saturated phosphatidylcholine and phospholipid were normal in mice lungs with absence of circulating leptin (ob/ob mice) at all ages. These studies coincided in findings that neither exogenously given leptin nor deficiency of leptin influenced fetal lung maturation or surfactant pool sizes in vivo. Furthermore, the key genes critically required for surfactant synthesis were not affected by leptin treatment.


Assuntos
Feto/efeitos dos fármacos , Feto/metabolismo , Leptina/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Proteínas Associadas a Surfactantes Pulmonares/biossíntese , Ovinos/embriologia , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Leptina/administração & dosagem , Pulmão/anatomia & histologia , Pulmão/metabolismo , Camundongos , Camundongos Obesos , Tamanho do Órgão/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Gravidez , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...