Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Mol Life Sci ; 80(8): 214, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466729

RESUMO

Mutations in the photoreceptor-specific tetraspanin gene peripherin-2 (PRPH2) lead to widely varying forms of retinal degeneration ranging from retinitis pigmentosa to macular dystrophy. Both inter- and intra-familial phenotypic heterogeneity has led to much interest in uncovering the complex pathogenic mechanisms of PRPH2-associated disease. Majority of disease-causing mutations in PRPH2 reside in the second intradiscal loop, wherein seven cysteines control protein folding and oligomerization. Here, we utilize knockin models to evaluate the role of three D2 loop cysteine mutants (Y141C, C213Y and C150S), alone or in combination. We elucidated how these mutations affect PRPH2 properties, including oligomerization and subcellular localization, and contribute to disease processes. Results from our structural, functional and molecular studies revealed that, in contrast to our understanding from prior investigations, rods are highly affected by PRPH2 mutations interfering with oligomerization and not merely by the haploinsufficiency associated with these mutations. On the other hand, cones are less affected by the toxicity of the mutant protein and significantly reduced protein levels, suggesting that knockdown therapeutic strategies may sustain cone functionality for a longer period. This observation provides useful data to guide and simplify the current development of effective therapeutic approaches for PRPH2-associated diseases that combine knockdown with high levels of gene supplementation needed to generate prolonged rod improvement.


Assuntos
Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Degeneração Macular/patologia , Tetraspaninas/metabolismo , Mutação/genética
3.
Redox Biol ; 54: 102375, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738087

RESUMO

Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.


Assuntos
Epitélio Pigmentado da Retina , Deficiência de Riboflavina , Animais , Homeostase , Camundongos , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Riboflavina/metabolismo , Riboflavina/farmacologia , Deficiência de Riboflavina/metabolismo , Deficiência de Riboflavina/patologia
4.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679728

RESUMO

Retinal oxidative stress is a common secondary feature of many retinal diseases. Though it may not be the initial insult, it is a major contributor to the pathogenesis of highly prevalent retinal dystrophic diseases like macular degeneration, diabetic retinopathy, and retinitis pigmentosa. We explored the role of superoxide dismutase 3 (SOD3) in retinal homeostasis since SOD3 protects the extracellular matrix (ECM) from oxidative injury. We show that SOD3 is mainly extracellularly localized and is upregulated as a result of environmental and pathogenic stress. Ablation of SOD3 resulted in reduced functional electroretinographic responses and number of photoreceptors, which is exacerbated with age. By contrast, overexpression showed increased electroretinographic responses and increased number of photoreceptors at young ages, but appears deleterious as the animal ages, as determined from the associated functional decline. Our exploration shows that SOD3 is vital to retinal homeostasis but its levels are tightly regulated. This suggests that SOD3 augmentation to combat oxidative stress during retinal degenerative changes may only be effective in the short-term.

5.
Front Cell Dev Biol ; 8: 743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923439

RESUMO

Stem cells have been part of the biomedical landscape since the early 1960s. However, the translation of stem cells to effective therapeutics have met significant challenges, especially for retinal diseases. The retina is a delicate and complex architecture of interconnected cells that are steadfastly interdependent. Degenerative mechanisms caused by acquired or inherited diseases disrupt this interconnectivity, devastating the retina and causing severe vision loss in many patients. Consequently, retinal differentiation of exogenous and endogenous stem cells is currently being explored as replacement therapies in the debilitating diseases. In this review, we will examine the mechanisms involved in exogenous stem cells differentiation and the challenges of effective integration to the host retina. Furthermore, we will explore the current advancements in trans-differentiation of endogenous stem cells, primarily Müller glia.

6.
Cells ; 9(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164325

RESUMO

In the past, the importance of serine to pathologic or physiologic anomalies was inadequately addressed. Omics research has significantly advanced in the last two decades, and metabolomic data of various tissues has finally brought serine metabolism to the forefront of metabolic research, primarily for its varied role throughout the central nervous system. The retina is one of the most complex neuronal tissues with a multitude of functions. Although recent studies have highlighted the importance of free serine and its derivatives to retinal homeostasis, currently few reviews exist that comprehensively analyze the topic. Here, we address this gap by emphasizing how and why the de novo production and demand for serine is exceptionally elevated in the retina. Many basic physiological functions of the retina require serine. Serine-derived sphingolipids and phosphatidylserine for phagocytosis by the retinal pigment epithelium (RPE) and neuronal crosstalk of the inner retina via D-serine require proper serine metabolism. Moreover, serine is involved in sphingolipid-ceramide balance for both the outer retina and the RPE and the reductive currency generation for the RPE via serine biosynthesis. Finally and perhaps the most vital part of serine metabolism is free radical scavenging in the entire retina via serine-derived scavengers like glycine and GSH. It is hard to imagine that a single tissue could have such a broad and extensive dependency on serine homeostasis. Any dysregulation in serine mechanisms can result in a wide spectrum of retinopathies. Therefore, most critically, this review provides a strong argument for the exploration of serine-based clinical interventions for retinal pathologies.


Assuntos
Degeneração Retiniana/metabolismo , Serina/metabolismo , Humanos
7.
Adv Exp Med Biol ; 1185: 335-339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884634

RESUMO

Diabetic retinopathy (DR) is a multifaceted disease, combining the deleterious effects of hyperglycemia and the propensity for accumulation of reactive oxygen species. Studies indicate that auto-oxidation of glucose, reduced antioxidant activity, and metabolic aberrations contribute to the pathogenesis of DR. These abnormalities stem from a fundamental imbalance between ROSs and antioxidant scavengers. To correct this imbalance and downstream effects, we propose that superoxide dismutase 3 (SOD3) is a viable therapeutic target for DR.


Assuntos
Retinopatia Diabética/fisiopatologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo , Diabetes Mellitus , Humanos , Espécies Reativas de Oxigênio/metabolismo
8.
Adv Exp Med Biol ; 1074: 275-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721953

RESUMO

Fibulins 2 and 5 are part of a seven-member family of proteins integral to the retinal extracellular matrix. Our study aimed to further explore the roles of both fibulins in retinal function. We obtained knockout mouse models of both fibulins and performed immunohistochemistry, electroretinography, and histology to investigate the outcome of eliminating these proteins. Immunohistochemical analysis showed that both fibulins are localized to the RPE, choroid, and Bruch's membrane. Functional testing showed a significantly reduced scotopic A response at 1 month of age, when compared to their wild-type counterpart. This functional reduction remained constant throughout the age of the animal and only declined as a result of normal aging. The functional decline was associated with reduced number of photoreceptor cells. The results presented clearly demonstrate that fibulins 2 and 5, as extracellular proteins, are necessary for normal retinal development.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Olho/fisiologia , Degeneração Macular/metabolismo , Retina/crescimento & desenvolvimento , Envelhecimento/patologia , Animais , Lâmina Basilar da Corioide/química , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Corioide/química , Eletrorretinografia , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Degeneração Macular/genética , Camundongos , Camundongos Knockout , Visão Noturna , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Proteínas Recombinantes/genética , Retina/metabolismo , Retina/fisiopatologia , Epitélio Pigmentado da Retina/química
9.
J Biol Chem ; 292(51): 21023-21034, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29079576

RESUMO

The interface between the neural retina and the retinal pigment epithelium (RPE) is critical for several processes, including visual pigment regeneration and retinal attachment to the RPE. One of its most important functions is the exchange of metabolites between the photoreceptors and RPE because photoreceptor cells have very high energy demands, largely satisfied by oxidative metabolism. The riboflavin (RF) cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), are two key cofactors involved in oxidative metabolism. We have previously shown that retbindin is a photoreceptor-specific RF-binding protein exclusively expressed in the rods and present in the interphotoreceptor matrix at the interface between the RPE and photoreceptor outer segments. Here, we show that retbindin ablation in mice causes a retinal phenotype characterized by time- and dose-dependent declines in rod and cone photoreceptor functions as early as 120 days of age. Whereas minor retinal ultrastructural defects were observed at all ages examined, a significant decline occurred in photoreceptor nuclei at 240 days of age (∼36.8% rods and ∼19.9% cones). Interestingly, significant reductions in FAD and FMN levels were observed before the onset of degeneration (∼46.1% FAD and ∼45% FMN). These findings suggest that the reduced levels of these flavins result in the disruption of intracellular mechanisms, leading to photoreceptor cell death. Altogether, our results suggest that retbindin is a key player in the acquisition and retention of flavins in the neural retina, warranting future investigation into retbindin's role in photoreceptor cell death in models of retinal degenerative disorders.


Assuntos
Proteínas do Olho/metabolismo , Flavinas/metabolismo , Degeneração Retiniana/etiologia , Animais , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Retina/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...