Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ J ; 76(12): 2875-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22972200

RESUMO

BACKGROUND: The prion protein (PrP) has been reported to serve as a surface maker for isolation of cardiomyogenic progenitors from murine embryonic stem (ES) cells. Although PrP-positive cells exhibited automaticity, their electrophysiological characteristics remain unresolved. The aim of the present study was therefore to investigate the electrophysiological properties of PrP-positive cells in comparison with those of HCN4p-or Nkx2.5-positive cells. METHODS AND RESULTS: Differentiation of AB1, HCN5p-EGFP and hcgp7 ES cells into cardiac progenitors was induced by embryoid body (EB) formation. EBs were dissociated and cells expressing PrP, HCN4-EGFP and/or Nkx2.5-GFP were collected via flow cytometry. Sorted cells were subjected to reverse transcriptase-polymerase chain reaction, immunostaining and patch-clamp experiments. PrP-positive cells expressed mRNA of undifferentiation markers, first and second heart field markers, and cardiac-specific genes and ion channels, indicating their commitment to cardiomyogenic progenitors. PrP-positive cells with automaticity showed positive and negative chronotropic responses to isoproterenol and carbamylcholine, respectively. Hyperpolarization-activated cation current (I(f)) was barely detectable, whereas Na(+) and L-type Ca(2+) channel currents were frequently observed. Their spontaneous activity was slowed by inhibition of sarcoplasmic reticulum Ca(2+) uptake and release but not by blocking I(f). The maximum diastolic potential of their spontaneous firings was more depolarized than that of Nkx2.5-GFP-positive cells. CONCLUSIONS: PrP-positive cells contained cardiac progenitors that separated from the lineage of sinoatrial node cells. PrP can be used as a marker to enrich nascent cardiac progenitors.


Assuntos
Potenciais de Ação , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/metabolismo , Príons/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Separação Celular/métodos , Técnicas de Cocultura , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos , Camundongos da Linhagem 129 , Contração Miocárdica , Técnicas de Patch-Clamp , Periodicidade , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...