Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(14): 40551-40562, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622593

RESUMO

Metal pollutants released from motor vehicles are deposited in roadside environments. Metals are non-biodegradable and biomagnify in the food chain causing significant health hazards at all levels of the ecosystem. Hence, management of contaminated roadside verges is critically important and should be kept in mind while planning specific management strategies of such areas. Native vegetation could help to decontaminate heavy metal polluted soils in the best sustainable way. Therefore, this study was designed to assess the potential of Nerium oleander to accumulate heavy metals commonly released by automobiles such as Pb, Cd, Ni, and Zn along with various C and N compounds from five different locations along a busy road in Punjab, Pakistan, during summer and winter seasons. N. oleander showed the ability to absorb C, N, and heavy metals Pb and Cd; the maximum concentration of Pb and Cd was 8.991 mg kg-1 and 0.599 mg kg-1, respectively. These pollutants negatively affected photosynthetic pigments, gas exchange attributes, soluble proteins, and free amino acids. But antioxidant activity of N. oleander was found to be increased in both seasons. The metal accumulation in the plant was higher in the summer though. We highly recommend that by growing N. oleander at roadside verges for decontamination of vehicular pollutants could lead to sustainable management of these corridors.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Nerium , Poluentes do Solo , Cádmio , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais , Chumbo , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Emissões de Veículos/análise , Recuperação e Remediação Ambiental/métodos
2.
Bull Environ Contam Toxicol ; 107(2): 336-342, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33974085

RESUMO

Heavy metal pollution is a great hazard to the environment that enters the ecosystem through different natural and anthropogenic sources. A study was performed to evaluate concentrations of Cd and Pb in selected plants, Ricinus communis and Parthenium hysterophorus, and soils from different functional sites in Sialkot. Maximum fresh and dry weights of R. communis were recorded from control and field sites. Highest concentrations of Cd in P. hysterophorus (33.5 mg kg-1) and R. communis (24.36 ± 2.83 mg kg-1) were recorded at residential and industrial sites, respectively. However, road site samples showed maximum concentrations of Pb both in R. communis (9.06 ± 0.35 mg kg-1) and P. hysterophorus (7.90 ± 0.36 mg kg-1). Soil from the road site were found to be highly acidic (pH 4.75 ± 0.04), while the field site showed highest EC (494 ± 3.60) and TDS (509 ± 3.00) values. Generally, there were reductions in chlorophyll a and carotenoids, but an increase in chlorophyll b was observed in both plants at all sites compared to the control.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Clorofila A , Ecossistema , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise
3.
Plant Reprod ; 27(2): 95-107, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24821062

RESUMO

F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Pólen/metabolismo , Pseudogenes , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Pólen/genética
4.
J Exp Bot ; 63(1): 91-105, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914659

RESUMO

Our understanding of plant growth in response to nitrogen (N) supply is mainly based on studies of mutants and transformants. This study explored the natural variability of Arabidopsis thaliana first to find out its global response to N availability and secondly to characterize the plasticity for growth and N metabolism among 23 genetically distant accessions under normal (N+), limited (N-), and starved (N0) N supplies. Plant growth was estimated by eight morphological traits characterizing shoot and root growth and 10 metabolic parameters that represented N and carbon metabolism. Most of the studied traits showed a large variation linked to genotype and nutrition. Furthermore, Arabidopsis growth was coordinated by master traits such as the shoot to root ratio of nitrate content in N+, root fresh matter and root amino acids in N-, and shoot fresh matter together with root thickness in N0. The 23 accessions could be gathered into four different groups, according to their growth in N+, N-, and N0. Phenotypic profiling characterized four different adaptative responses to N- and N0. Class 1 tolerated N limitation with the smallest decrease in shoot and root biomass compared with N+, while class 2 presented the highest resistance to N starvation by preferential increased root growth, huge starch accumulation, and high shoot nitrate content. In contrast, class 3 plants could tolerate neither N limitation nor N starvation. Small plants of class 4 were different, with shoot biomass barely affected in N- and root biomass unaffected in N0.


Assuntos
Arabidopsis/fisiologia , Variação Genética , Nitrogênio/metabolismo , Análise de Variância , Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...